Alexander D. Gitlin
Rockefeller University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander D. Gitlin.
Science | 2013
Michela Di Virgilio; Elsa Callen; Arito Yamane; Wenzhu Zhang; Mila Jankovic; Alexander D. Gitlin; Niklas Feldhahn; Wolfgang Resch; Thiago Y. Oliveira; Brian T. Chait; André Nussenzweig; Rafael Casellas; Davide F. Robbiani; Michel C. Nussenzweig
Fixing Broken DNA Some physiological processes, such as immunoglobulin class switching and telomere attrition, result in double-stranded DNA breaks. The DNA damage repair protein, 53BP1, prevents nucleolytic processing of these breaks, but the proteins it partners with to do this are unknown (see the Perspective by Lukas and Lukas). Di Virgilio et al. (p. 711, published online 10 January), using mass spectroscopy–based methods, and Zimmermann et al. (p. 700, published online 10 January), using a telomere-based assay, identify Rif1 as a 53BP1 phosphorylation- and DNA damage–dependent interaction partner. Mice with a B cell–specific deletion in Rif1 showed impaired immunoglobulin class switching. Rif1-deficient cells exhibited extensive 5′-3′ resection at DNA ends, with enhanced genetic instability. Thus, Rif1 partners with 53BP1 to promote the proper repair of double-stranded DNA breaks. In mammalian cells, Rap1-interacting factor 1 protects DNA ends against resection. [Also see Perspective by Lukas and Lukas] DNA double-strand breaks (DSBs) represent a threat to the genome because they can lead to the loss of genetic information and chromosome rearrangements. The DNA repair protein p53 binding protein 1 (53BP1) protects the genome by limiting nucleolytic processing of DSBs by a mechanism that requires its phosphorylation, but whether 53BP1 does so directly is not known. Here, we identify Rap1-interacting factor 1 (Rif1) as an ATM (ataxia-telangiectasia mutated) phosphorylation-dependent interactor of 53BP1 and show that absence of Rif1 results in 5′-3′ DNA-end resection in mice. Consistent with enhanced DNA resection, Rif1 deficiency impairs DNA repair in the G1 and S phases of the cell cycle, interferes with class switch recombination in B lymphocytes, and leads to accumulation of chromosome DSBs.
Nature | 2014
Alexander D. Gitlin; Ziv Shulman; Michel C. Nussenzweig
During immune responses, B lymphocytes clonally expand and undergo secondary diversification of their immunoglobulin genes in germinal centres (GCs). High-affinity B cells are expanded through iterative interzonal cycles of division and hypermutation in the GC dark zone followed by migration to the GC light zone, where they are selected on the basis of affinity to return to the dark zone. Here we combine a transgenic strategy to measure cell division and a photoactivatable fluorescent reporter to examine whether the extent of clonal expansion and hypermutation are regulated during interzonal GC cycles. We find that both cell division and hypermutation are directly proportional to the amount of antigen captured and presented by GC B cells to follicular helper T cells in the light zone. Our data explain how GC B cells with the highest affinity for antigen are selectively expanded and diversified.
Journal of Experimental Medicine | 2011
Tanja A. Schwickert; Gabriel D. Victora; David R. Fooksman; Alice O. Kamphorst; Monica R. Mugnier; Alexander D. Gitlin; Michael L. Dustin; Michel C. Nussenzweig
Entry into the germinal center requires antigen-bearing B cells to compete for cognate T cell help at the T–B border.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Joshua A. Horwitz; Ariel Halper-Stromberg; Hugo Mouquet; Alexander D. Gitlin; Anna Tretiakova; Thomas R. Eisenreich; Marine Malbec; Sophia Gravemann; Eva Billerbeck; Marcus Dorner; Hildegard Büning; Olivier Schwartz; Elena Knops; Rolf Kaiser; Michael S. Seaman; James M. Wilson; Charles M. Rice; Alexander Ploss; Pamela J. Bjorkman; Florian Klein; Michel C. Nussenzweig
Significance Treatment of HIV-1 infection in humans is achieved using combinations of highly effective antiretroviral therapy (ART) drugs to potently suppress viral replication and prevent the emergence of drug-resistant viruses. However, ART drugs must be taken indefinitely owing to rapid return of viremia upon termination of treatment. Highly potent broadly neutralizing antibodies (bNAbs) present a new potential therapeutic modality in the treatment of HIV-1 infection. Because of their comparatively longer half-lives relative to ART drugs and their ability to eliminate infected cells, bNAbs may alleviate some aspects of the lifelong treatment adherence burden of ART. Here we show that lowering the initial viral load with ART enables single bNAbs to effectively control an established HIV-1 infection in humanized mice. Effective control of HIV-1 infection in humans is achieved using combinations of antiretroviral therapy (ART) drugs. In humanized mice (hu-mice), control of viremia can be achieved using either ART or by immunotherapy using combinations of broadly neutralizing antibodies (bNAbs). Here we show that treatment of HIV-1–infected hu-mice with a combination of three highly potent bNAbs not only resulted in complete viremic control but also led to a reduction in cell-associated HIV-1 DNA. Moreover, lowering the initial viral load by coadministration of ART and immunotherapy enabled prolonged viremic control by a single bNAb after ART was withdrawn. Similarly, a single injection of adeno-associated virus directing expression of one bNAb produced durable viremic control after ART was terminated. We conclude that immunotherapy reduces plasma viral load and cell-associated HIV-1 DNA and that decreasing the initial viral load enables single bNAbs to control viremia in hu-mice.
Science | 2013
Ziv Shulman; Alexander D. Gitlin; Sasha Targ; Mila Jankovic; Giulia Pasqual; Michel C. Nussenzweig; Gabriel D. Victora
Help Shared Germinal centers are specialized structures within lymph nodes, where B cells undergo the changes required to produce high-affinity antibodies. This process relies on T follicular helper (Tfh) cells. The dynamic properties of Tfh cells and how they affect the selection of B cells, however, are not well understood. Using two-photon laser scanning microscopy of mouse lymph nodes, Shulman et al. (p. 673, published online 25 July) find that Tfh cells are not restricted to a single germinal center, but instead emigrate into neighboring germinal centers within the same lymph nodes. Furthermore, newly activated T cells can enter already established germinal centers and presumably influence ongoing B cell selection and differentiation. Such active movement may ensure maximal diversification of the B cell response and promote the production of high-affinity antibodies. Tracking individual cells reveals that immunological T cell help is shared between immune B cell germinal centers. T follicular helper (TFH) cells are a specialized subset of effector T cells that provide help to and thereby select high-affinity B cells in germinal centers (GCs). To examine the dynamic behavior of TFH cells in GCs in mice, we used two-photon microscopy in combination with a photoactivatable fluorescent reporter. Unlike GC B cells, which are clonally restricted, TFH cells distributed among all GCs in lymph nodes and continually emigrated into the follicle and neighboring GCs. Moreover, newly activated TFH cells invaded preexisting GCs, where they contributed to B cell selection and plasmablast differentiation. Our data suggest that the dynamic exchange of TFH cells between GCs ensures maximal diversification of T cell help and that their ability to enter ongoing GCs accommodates antigenic variation during the immune response.
Cell | 2015
Pia Dosenovic; Lotta von Boehmer; Amelia Escolano; Joseph G. Jardine; Natalia T. Freund; Alexander D. Gitlin; Andrew T. McGuire; Daniel W. Kulp; Thiago Y. Oliveira; Louise Scharf; John Pietzsch; Matthew D. Gray; Albert Cupo; Marit J. van Gils; Kai Hui Yao; Cassie Liu; Anna Gazumyan; Michael S. Seaman; Pamela J. Bjorkman; Rogier W. Sanders; John P. Moore; Leonidas Stamatatos; William R. Schief; Michel C. Nussenzweig
A subset of individuals infected with HIV-1 develops broadly neutralizing antibodies (bNAbs) that can prevent infection, but it has not yet been possible to elicit these antibodies by immunization. To systematically explore how immunization might be tailored to produce them, we generated mice expressing the predicted germline or mature heavy chains of a potent bNAb to the CD4 binding site (CD4bs) on the HIV-1 envelope glycoprotein (Env). Immunogens specifically designed to activate B cells bearing germline antibodies are required to initiate immune responses, but they do not elicit bNAbs. In contrast, native-like Env trimers fail to activate B cells expressing germline antibodies but elicit bNAbs by selecting for a restricted group of light chains bearing specific somatic mutations that enhance neutralizing activity. The data suggest that vaccination to elicit anti-HIV-1 antibodies will require immunization with a succession of related immunogens.
Immunity | 2016
Jon M. Steichen; Daniel W. Kulp; Talar Tokatlian; Amelia Escolano; Pia Dosenovic; Robyn L. Stanfield; Laura E. McCoy; Gabriel Ozorowski; Xiaozhen Hu; Oleksandr Kalyuzhniy; Bryan Briney; Torben Schiffner; Fernando Garces; Natalia T. Freund; Alexander D. Gitlin; Sergey Menis; Erik Georgeson; Michael Kubitz; Yumiko Adachi; Meaghan Jones; Andrew Ayk Mutafyan; Dong Soo Yun; Christian T. Mayer; Andrew B. Ward; Dennis R. Burton; Ian A. Wilson; Darrell J. Irvine; Michel C. Nussenzweig; William R. Schief
Summary Broadly neutralizing antibodies (bnAbs) against the N332 supersite of the HIV envelope (Env) trimer are the most common bnAbs induced during infection, making them promising leads for vaccine design. Wild-type Env glycoproteins lack detectable affinity for supersite-bnAb germline precursors and are therefore unsuitable immunogens to prime supersite-bnAb responses. We employed mammalian cell surface display to design stabilized Env trimers with affinity for germline-reverted precursors of PGT121-class supersite bnAbs. The trimers maintained native-like antigenicity and structure, activated PGT121 inferred-germline B cells ex vivo when multimerized on liposomes, and primed PGT121-like responses in PGT121 inferred-germline knockin mice. Design intermediates have levels of epitope modification between wild-type and germline-targeting trimers; their mutation gradient suggests sequential immunization to induce bnAbs, in which the germline-targeting prime is followed by progressively less-mutated design intermediates and, lastly, with native trimers. The vaccine design strategies described could be utilized to target other epitopes on HIV or other pathogens.
Science | 2015
Alexander D. Gitlin; Christian T. Mayer; Thiago Y. Oliveira; Ziv Shulman; Mathew J. K. Jones; Amnon Koren; Michel C. Nussenzweig
B cells have a need for speed High-affinity antibodies provide long-lasting protective immunity against many infections. Generating such antibodies requires help, in the form of T cells, which interact with antibody-producing B cells. As B cells proliferate and mutate their antibody genes, T cells select the cells producing high-affinity antibodies. Gitlin et al. show in mice that B cells that receive T cell help transit through the cell cycle more quickly by increasing the speed at which replication forks progress. Such a rapid cell cycle transition gives high-affinity B cells a selective advantage. Science, this issue p. 643 T cells help select high-affinity antibodies by increasing the speed at which B cells progress through the cell cycle. The germinal center (GC) is a microanatomical compartment wherein high-affinity antibody-producing B cells are selectively expanded. B cells proliferate and mutate their antibody genes in the dark zone (DZ) of the GC and are then selected by T cells in the light zone (LZ) on the basis of affinity. Here, we show that T cell help regulates the speed of cell cycle phase transitions and DNA replication of GC B cells. Genome sequencing and single-molecule analyses revealed that T cell help shortens S phase by regulating replication fork progression, while preserving the relative order of replication origin activation. Thus, high-affinity GC B cells are selected by a mechanism that involves prolonged dwell time in the DZ where selected cells undergo accelerated cell cycles.
Nature Communications | 2016
Andrew T. McGuire; Matthew D. Gray; Pia Dosenovic; Alexander D. Gitlin; Natalia T. Freund; John Petersen; Colin Correnti; William Johnsen; Robert Kegel; Andrew B. Stuart; Jolene Glenn; Michael S. Seaman; William R. Schief; Roland K. Strong; Michel C. Nussenzweig; Leonidas Stamatatos
VRC01-class broadly neutralizing HIV-1 antibodies protect animals from experimental infection and could contribute to an effective vaccine response. Their predicted germline forms (gl) bind Env inefficiently, which may explain why they are not elicited by HIV-1 Env-immunization. Here we show that an optimized Env immunogen can engage multiple glVRC01-class antibodies. Furthermore, this immunogen activates naive B cells expressing the human germline heavy chain of 3BNC60, paired with endogenous mouse light chains in vivo. To address whether it activates B cells expressing the fully humanized gl3BNC60 B-cell receptor (BCR), we immunized mice carrying both the heavy and light chains of gl3BNC60. B cells expressing this BCR display an autoreactive phenotype and fail to respond efficiently to soluble forms of the optimized immunogen, unless it is highly multimerized. Thus, specifically designed Env immunogens can activate naive B cells expressing human BCRs corresponding to precursors of broadly neutralizing HIV-1 antibodies even when the B cells display an autoreactive phenotype.
Immunity | 2016
Alexander D. Gitlin; Lotta von Boehmer; Anna Gazumyan; Ziv Shulman; Thiago Y. Oliveira; Michel C. Nussenzweig
Somatic hypermutation (SHM) and class-switch recombination (CSR) increase the affinity and diversify the effector functions of antibodies during immune responses. Although SHM and CSR are fundamentally different, their independent roles in regulating B cell fate have been difficult to uncouple because a single enzyme, activation-induced cytidine deaminase (encoded by Aicda), initiates both reactions. Here, we used a combination of Aicda and antibody mutant alleles that separate the effects of CSR and SHM on polyclonal immune responses. We found that class-switching to IgG1 biased the fate choice made by B cells, favoring the plasma cell over memory cell fate without significantly affecting clonal expansion in the germinal center (GC). In contrast, SHM reduced the longevity of memory B cells by creating polyreactive specificities that were selected against over time. Our data define the independent contributions of SHM and CSR to the generation and persistence of memory in the antibody system.