Alexander D. Lewis
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander D. Lewis.
International Journal of Radiation Oncology Biology Physics | 1994
Roy Rampling; Garth S. Cruickshank; Alexander D. Lewis; Sara A. Fitzsimmons; Paul Workman
PURPOSE To measure the oxygen status of human malignant brain tumors in vivo and to determine the activities and expression of bioreductive enzymes in these same human brain tumor samples, as a means of assessing their suitability as targets for bioreductive drug therapy. METHODS AND MATERIALS A polarographic oxygen electrode was used to measure the intratumoral oxygen tension in twenty patients with malignant brain tumors during open brain surgery, performed under standard anaesthetic conditions. Six different tracks, each with a path length of 22 mm, were recorded per patient representing 192 readings. Following pO2 measurements the tumors were resected and stored in liquid N2 for subsequent bioreductive enzyme analysis. Eight human malignant brain tumors were assessed, by enzyme activity and western blot expression, for the presence of various bioreductive enzymes. These enzymes included DT-diaphorase, NADH cytochrome b5 reductase, and NADPH cytochrome P-450 reductase. Of these eight gliomas analyzed six samples were incubated with the bioreductive drug tirapazamine, in the presence of cofactor(s), to establish whether human brain tumors could metabolize this compound. RESULTS Both the high grade intrinsic and metastatic brain tumors showed significant regions of hypoxia. All the tumors subjected to enzyme profiling contained the bioreductive enzymes, DT-diaphorase, NADH cytochrome b5 reductase and NADPH cytochrome P-450 reductase. Also all six of the brain tumors investigated could metabolize tirapazamine to the two-electron reduction product. CONCLUSION These findings would favor primary brain tumors as suitable targets for bioreductive therapy.
British Journal of Cancer | 1997
A. López de Cerain; Eric A Hamilton; Alexander D. Lewis; J. M. Martinez-Peñuela; Miguel Ángel Idoate; J. Bello
The level of expression of enzymes that can activate or detoxify bioreductive agents within tumours has emerged as an important feature in the development of these anti-tumour compounds. The levels of two such reductase enzymes have been determined in 19 human non-small-cell lung tumours and 20 human breast tumours, together with the corresponding normal tissue. DT-diaphorase (DTD) enzyme levels (both expression and activity) were determined in these samples. Cytochrome b5 reductase (Cytb5R) activity was also assessed. With the exception of six patients, the levels of DTD activity were below 45 nmol min(-1) mg(-1) in the normal tissues assayed. DTD tumour activity was extremely variable, distinguishing two different groups of patients, one with DTD activity above 79 nmol min(-1) mg(-1) and the other with levels that were in the same range as found for the normal tissues. In 53% of the lung tumour samples, DTD activity was increased with respect to the normal tissue by a factor of 2.4-90.3 (range 79-965 nmol min[-1] mg[-1]). In 70% of the breast tumour samples, DTD activity was over 80 nmol min(-1) mg(-1) (range 83-267 nmol min[-1] mg[-1]). DTD expression measured by Western blot correlated well with the enzyme activity measured in both tumour and normal tissues. The levels of the other reductase enzyme, Cytb5R, were not as variable as those for DTD, being in the same range in both tumour and normal tissue or slightly higher in the normal tissues. The heterogeneous nature of DTD activity and expression reinforces the need to measure enzyme levels in individual patients before therapy with DTD-activated bioreductive drugs.
British Journal of Cancer | 1997
Stuart G. M. Bailey; Michael D. Wyatt; Frank Friedlos; John A. Hartley; Richard J. Knox; Alexander D. Lewis; Paul Workman
The chemistry of the mitomycin C-related drug indoloquinone EO9 would suggest that its mechanism of action is likely to involve DNA damage after reductive activation. The ability of this agent to induce DNA damage in intact cells has been examined using alkaline filter elution. After treatment with pharmacologically relevant concentrations of EO9, both DNA strand breaks and interstrand cross-links were detected in rat Walker tumour cells and human HT29 colon carcinoma cells. These cell lines express relatively high levels of DT-diaphorase (NAD(P)H: quinone acceptor oxidoreductase), which is believed to be involved in EO9 activation. The extent of DNA damage was increased by approximately 30-fold under hypoxia in BE colon carcinoma cells that express non-functional DT-diaphorase, but this dramatic hypoxia enhancement was not seen in HT-29 cells. These data are consistent with cytotoxicity studies that indicate that DT-diaphorase appears to be important in EO9 activation under aerobic conditions, but other enzymes may be more relevant under hypoxia. The involvement of DT-diaphorase in DNA damage induction was further investigated using cell-free assays. DNA cross-links were detectable in plasmid DNA co-incubated with EO9, cofactor and DT-diaphorase but not in the absence of this enzyme. In contrast, using a Taq polymerase stop assay, monofunctional alkylation was detected in plasmid DNA without metabolic activation, although the sequence selectivity was altered after reduction catalysed by DT-diaphorase.
Cancer Chemotherapy and Pharmacology | 1998
Valerie G. Brunton; Gregor Steele; Alexander D. Lewis; Paul Workman
Abstract We investigated two of the major proposed modes of action of the benzoquinoid ansamycin geldanamycin using a pair of human colon-carcinoma cell lines, BE and HT29. One potential mechanism of action in colorectal cancer is the inhibition of c-Src kinase activity, since this proto-oncogene is hyperexpressed in human large-bowel tumours. Our results show that despite the 9-fold higher level of c-Src kinase activity found in HT29 cells, there was only a 1.4-fold difference in cytotoxicity as compared with BE cells, the latter being the most sensitive. Moreover, even at concentrations of geldanamycin that resulted in cell kill of 80% or more after a 24-h period of exposure, there was no effect on␣␣␣ c-Src kinase activity in HT29 cells, although c-Src protein was depleted at supralethal levels of exposure. We also investigated the metabolism of the quinone moiety of geldanamycin by DT-diaphorase, an enzyme that activates certain quinone antibiotics such as mitomycin C and is hyperexpressed in colorectal cancer cells. Geldanamycin was shown to be a substrate for␣DT-diaphorase present in HT29 cells. However, the lack of a major differential in cytotoxicity between HT29 and BE cells indicates that this is unlikely to be pharmacologically significant, since the former contains high levels of enzyme activity, whereas BE cells have no significant activity due to a point mutation in the DT-diaphorase (NQO1) gene. Although reduction of geldanamycin was also catalysed by non-DT-diaphorase reductases in HT29 and BE cells, providing the potential for free radical induction, this is unlikely to be significant since studies previously reported by us elsewhere showed that cells exposed to geldanamycin exhibited no evidence of DNA damage. Thus, as far as the mode of action of geldanamycin in human colon-carcinoma cells is concerned, the present results rule out two major possibilities, namely, the involvement of c-Src tyrosine kinase inhibition and DT-diaphorase metabolism.
International Journal of Radiation Oncology Biology Physics | 1992
Alexander D. Lewis; George E. Duran; Derick H. M. Lau; Branimir I. Sikic
MRA-CN, the alkylating cyanomorpholino derivative of doxorubicin (DOX), is extremely potent (100 to 1000 fold increase in cytotoxicity in vitro and in vivo), more lipophilic, non-cardiotoxic, and non-cross-resistant in multidrug resistant cells compared to DOX. We have developed an ovarian carcinoma cell line ES-2R that is 4-fold resistant to MRA-CN, compared to the parental ES-2 cells. This resistant cell line exhibits cross-resistance to alkylators and ionizing radiation. Glutathione (GSH) and GSH-dependent enzymes were found to be altered in the resistant cells with 1.5-fold increase in GSH, and 2- to 3-fold increase in the pi-class glutathione-s-transferase (GST) protein. Both D,L buthionine-S,R-sulfoximine (BSO) and ethacrynic acid (EA), inhibitors of GSH biosynthesis and pi-class GST activity, respectively, could sensitize the ES-2R cells to MRA-CN. These findings implicate a role for GSH metabolism in resistance of ES-2R cells to MRA-CN. The data also indicates the potential utility of EA to modulate GST activity and sensitize tumor cells toward alkylators.
Cancer Chemotherapy and Pharmacology | 1996
George E. Duran; Derick H. M. Lau; Alexander D. Lewis; Jörn S. Kühl; Theodor K. Bämmler; Branimir I. Sikic
Abstract The morpholinyl analogues of doxorubicin (DOX) have previously been reported to be non-cross-resistant in multidrug resistant (MDR) cells due to a lower affinity for P-glycoprotein relative to the parent compound. In order to further investigate the mechanisms of action of these morpholinyl anthracyclines, we examined their ability to cause DNA single- and double-strand breaks (SSB, DSB) and their interactions with topoisomerases. Alkaline elution curves were determined after 2-h drug treatment at 0.5, 2 and 5 μM, while neutral elution was conducted at 5, 10 and 25 μM in a human ovarian cell line, ES-2. A pulse-field gel electrophoresis assay was used to confirm the neutral elution data under the same conditions. Further, K-SDS precipitation and topoisomerase drug inhibition assays were used to determine the effects of DOX and the morpholinyl analogues on topoisomerase (Topo) I and II. Under deproteinated elution conditions (pH 12.1), DOX, morpholinyl DOX (MRA), methoxymorpholinyl DOX (MMDX) and morpholinyl oxaunomycin (MX2) were equipotent at causing SSB in the human ovarian carcinoma cell line, ES-2. However, neutral elution (pH 9.6) under deproteinated conditions revealed marked differences in the degree of DNA DSB. After 2-h drug exposures at 10 μM, DSBs were 3300 rad equivalents for MX2, 1500 for DOX and 400 for both MRA and MMDX in the ES-2 cell line. Pulse-field data substantiated these differences in DSBs, with breaks easily detected after MX2 and DOX treatment, but not with MRA and MMDX. DOX and MX2 thus cause DNA strand breaks selectively through interaction with Topo II, but not Topo I. In contrast, MRA and MMDX cause DNA breaks through interactions with both topoisomerases with a predominant inhibition of Topo I.
Journal of the National Cancer Institute | 1996
Sara A. Fitzsimmons; Paul Workman; Michael R. Grever; Kenneth D. Paull; Richard Camalier; Alexander D. Lewis
International Journal of Cancer | 1987
C. Roland Wolf; Ian P. Hayward; Sandra S. Lawrie; Karin E. Buckton; Margaret A. McIntyre; David J. Adams; Alexander D. Lewis; Angela R. R. Scott; John F. Smyth
Cancer Research | 1991
Derick H. M. Lau; Alexander D. Lewis; Mohamed N. Ehsan; Branimir I. Sikic
Carcinogenesis | 1995
Lesley I. McLellan; Alexander D. Lewis; David J. Hall; John D. Ansell; C. Roland Wolf