Alexander D. Schenkman
University of Oklahoma
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander D. Schenkman.
Monthly Weather Review | 2011
Alexander D. Schenkman; Ming Xue; Alan Shapiro; Keith Brewster; Jidong Gao
Abstract The Advanced Regional Prediction System (ARPS) model is employed to perform high-resolution numerical simulations of a mesoscale convective system and associated cyclonic line-end vortex (LEV) that spawned several tornadoes in central Oklahoma on 8–9 May 2007. The simulation uses a 1000 km × 1000 km domain with 2-km horizontal grid spacing. The ARPS three-dimensional variational data assimilation (3DVAR) is used to assimilate a variety of data types. All experiments assimilate routine surface and upper-air observations as well as wind profiler and Oklahoma Mesonet data over a 1-h assimilation window. A subset of experiments assimilates radar data. Cloud and hydrometeor fields as well as in-cloud temperature are adjusted based on radar reflectivity data through the ARPS complex cloud analysis procedure. Radar data are assimilated from the Weather Surveillance Radar-1988 Doppler (WSR-88D) network as well as from the Engineering Research Center for Collaborative and Adaptive Sensing of the Atmospher...
Journal of the Atmospheric Sciences | 2014
Alexander D. Schenkman; Ming Xue; Ming Hu
AbstractA 50-m-grid-spacing Advanced Regional Prediction System (ARPS) simulation of the 8 May 2003 Oklahoma City tornadic supercell is examined. A 40-min forecast run on the 50-m grid produces two F3-intensity tornadoes that track within 10 km of the location of the observed long-track F4-intensity tornado.The development of both simulated tornadoes is analyzed to determine the processes responsible for tornadogenesis. Trajectory-based analyses of vorticity components and their time evolution reveal that tilting of low-level frictionally generated horizontal vorticity plays a dominant role in the development of vertical vorticity near the ground. This result represents the first time that such a mechanism has been shown to be important for generating near-surface vertical vorticity leading to tornadogenesis.A sensitivity simulation run with surface drag turned off was found to be considerably different from the simulation with drag included. A tornado still developed in the no-drag simulation, but it was...
Monthly Weather Review | 2011
Alexander D. Schenkman; Ming Xue; Alan Shapiro; Keith Brewster; Jidong Gao
AbstractThe impact of radar and Oklahoma Mesonet data assimilation on the prediction of mesovortices in a tornadic mesoscale convective system (MCS) is examined. The radar data come from the operational Weather Surveillance Radar-1988 Doppler (WSR-88D) and the Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere’s (CASA) IP-1 radar network. The Advanced Regional Prediction System (ARPS) model is employed to perform high-resolution predictions of an MCS and the associated cyclonic line-end vortex that spawned several tornadoes in central Oklahoma on 8–9 May 2007, while the ARPS three-dimensional variational data assimilation (3DVAR) system in combination with a complex cloud analysis package is used for the data analysis. A set of data assimilation and prediction experiments are performed on a 400-m resolution grid nested inside a 2-km grid, to examine the impact of radar data on the prediction of meso-γ-scale vortices (mesovortices). An 80-min assimilation window is used in rad...
Weather and Forecasting | 2014
Ming Xue; Ming Hu; Alexander D. Schenkman
AbstractThe 8 May 2003 Oklahoma City, Oklahoma, tornadic supercell is predicted with the Advanced Regional Prediction System (ARPS) model using four nested grids with 9-km, 1-km, 100-m, and 50-m grid spacings. The Oklahoma City Weather Surveillance Radar-1988 Doppler (WSR-88D) radial velocity and reflectivity data are assimilated through the ARPS three-dimensional variational data assimilation (3DVAR) and cloud analysis on the 1-km grid to generate a set of initial conditions that includes a well-analyzed supercell and associated low-level mesocyclone. Additional 1-km experiments show that the use of radial velocity and the proper use of a divergence constraint in the 3DVAR play an important role in the establishment of the low-level mesocyclone during the assimilation and forecast. Assimilating reflectivity data alone failed to predict the mesocyclone intensification. The 100-m grid starts from the interpolated 1-km control initial conditions, while the further nested 50-m grid starts from the 20-min for...
Journal of the Atmospheric Sciences | 2012
Alexander D. Schenkman; Ming Xue; Alan Shapiro
AbstractThe Advanced Regional Prediction System (ARPS) is used to simulate a tornadic mesovortex with the aim of understanding the associated tornadogenesis processes. The mesovortex was one of two tornadic mesovortices spawned by a mesoscale convective system (MCS) that traversed southwestern and central Oklahoma on 8–9 May 2007. The simulation used 100-m horizontal grid spacing, and is nested within two outer grids with 400-m and 2-km grid spacing, respectively. Both outer grids assimilate radar, upper-air, and surface observations via 5-min three-dimensional variational data assimilation (3DVAR) cycles. The 100-m grid is initialized from a 40-min forecast on the 400-m grid.Results from the 100-m simulation provide a detailed picture of the development of a mesovortex that produces a submesovortex-scale tornado-like vortex (TLV). Closer examination of the genesis of the TLV suggests that a strong low-level updraft is critical in converging and amplifying vertical vorticity associated with the mesovortex...
Journal of the Atmospheric Sciences | 2016
Alexander D. Schenkman; Ming Xue; Daniel T. Dawson
AbstractA high-resolution simulation of the 8 May 2003 Oklahoma tornadic supercell is analyzed to determine the origin of internal outflow surges within the low-level cold pool. The analyzed simulation has 50-m horizontal grid spacing and is quadruply nested within larger, lower-resolution domains that were initialized via three-dimensional variational data assimilation (3DVAR) of radar and other observations. The high-resolution simulation produces two tornadoes that track in close proximity to the observed tornado on 8 May 2003. The authors’ previous study determined that an internal outflow surge instigated tornadogenesis for the first tornado in this simulation but the cause of this internal outflow surge was unclear.In this study, the vertical momentum equation is analyzed along backward trajectories that are initialized within the tornado-triggering internal outflow surge. The analysis reveals that the internal outflow surge is forced by the dynamic part of the vertical pressure gradient. Further ex...
Journal of the Atmospheric Sciences | 2016
Brett Roberts; Ming Xue; Alexander D. Schenkman; Daniel T. Dawson
AbstractTo investigate the effect of surface drag on tornadogenesis, a pair of idealized simulations is conducted with 50-m horizontal grid spacing. In the first experiment (full-wind drag case), surface drag is applied to the full wind; in the second experiment (environmental drag case), drag is applied only to the background environmental wind, with storm-induced perturbations unaffected. The simulations are initialized using a thermal bubble within a horizontally homogeneous background environment that has reached a balance between the pressure gradient, Coriolis, and frictional forces. The environmental sounding is derived from a prior simulation of the 3 May 1999 Oklahoma tornado outbreak but modified to account for near-ground frictional effects. In the full-wind drag experiment, a tornado develops around 25 min into the simulation and persists for more than 10 min; in the environmental-only drag experiment, no tornado occurs. Three distinct mechanisms are identified by which surface drag influences...
Journal of the Atmospheric Sciences | 2016
Daniel T. Dawson; Ming Xue; Alan Shapiro; Jason A. Milbrandt; Alexander D. Schenkman
AbstractVortex stretching by intense upward accelerations is a critical process for tornadogenesis and maintenance. Two high-resolution (250-m grid spacing) real-data simulations of the 3 May 1999 Oklahoma City, Oklahoma, supercell and associated tornadoes, using single- and triple-moment microphysics parameterization schemes, respectively, are examined. Microphysical, thermodynamic, and dynamic impacts on the vertical accelerations near and within simulated tornado-like vortices (TLVs) are analyzed. Systematic differences in behavior of the TLVS between the two experiments are found; the TLV in the triple-moment simulation is substantially more intense and longer lived than in the single-moment case. The triple-moment scheme in this case produces less rain and hail mass in the low levels and drop size distributions of rain shifted toward larger drops, relative to the single-moment scheme, leading to less latent cooling and warmer outflow. Trajectory analyses reveal that more parcels entering the TLV in t...
IEEE Transactions on Geoscience and Remote Sensing | 2016
Andrew D. Byrd; Igor R. Ivic; Robert D. Palmer; Bradley Isom; Boon Leng Cheong; Alexander D. Schenkman; Ming Xue
A radar simulator capable of generating time series data for a polarimetric phased array weather radar has been designed and implemented. The received signals are composed from a high-resolution numerical prediction weather model. Thousands of scattering centers (SCs), each with an independent randomly generated Doppler spectrum, populate the field of view of the radar. The moments of the SC spectra are derived from the numerical weather model, and the SC positions are updated based on the 3-D wind field. In order to accurately emulate the effects of the system-induced cross-polar contamination, the array is modeled using a complete set of dual-polarization radiation patterns. The simulator offers reconfigurable element patterns and positions and access to independent time series data for each element, resulting in easy implementation of any beamforming method. It also allows for arbitrary waveform designs and is able to model the effects of quantization on waveform performance. Simultaneous, alternating, quasi-simultaneous, and pulse-to-pulse phase-coded modes of polarimetric signal transmission have been implemented. This framework allows for realistic emulation of the effects of cross-polar fields on weather observations, as well as the evaluation of possible techniques for the mitigation of those effects.
Atmospheric Research | 2013
David J. Stensrud; Louis J. Wicker; Ming Xue; Daniel T. Dawson; Nusrat Yussouf; Dustan M. Wheatley; Therese E. Thompson; Nathan Snook; Travis M. Smith; Alexander D. Schenkman; Corey K. Potvin; Edward R. Mansell; Ting Lei; Kristin M. Kuhlman; Youngsun Jung; Thomas A. Jones; Jidong Gao; Michael C. Coniglio; Harold E. Brooks; Keith Brewster