Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander Emelyanov is active.

Publication


Featured researches published by Alexander Emelyanov.


Developmental Dynamics | 2004

Tol2 transposon-mediated enhancer trap to identify developmentally regulated zebrafish genes in vivo.

Serguei Parinov; Igor Kondrichin; Vladimir Korzh; Alexander Emelyanov

We have used the Tol2 transposable element to design and perform effective enhancer trapping in zebrafish. Modified transposon DNA and transposase RNA were delivered into zebrafish embryos by microinjection to produce heritable insertions in the zebrafish genome. The enhancer trap construct carries the EGFP gene controlled by a partial epithelial promoter from the keratin8 gene. Enhanced green fluorescent protein (EGFP) is used as a marker to select F1 transgenic fish and as a reporter to trap enhancers. We have isolated 28 transgenic lines that were derived from the 37 GFP‐positive F0 founders and displayed various specific EGFP expression patterns in addition to basal expression from the modified keratin 8 promoter. Analyses of expression by whole‐mount RNA in situ hybridization demonstrated that these patterns could recapitulate the expression of the tagged genes to a variable extent and, therefore, confirmed that our construct worked effectively as an enhancer trap. Transgenic offspring from the 37 F0 EGFP‐positive founders have been genetically analyzed up to the F2 generation. Flanking sequences from 65 separate transposon insertion sites were identified by thermal asymmetric interlaced polymerase chain reaction. Injection of the transposase RNA into transgenic embryos induced remobilization of genomic Tol2 copies producing novel insertions including some in the germ line. The approach has great potential for developmental and anatomical studies of teleosts. Developmental Dynamics 231:449–459, 2004.


Genetics | 2006

Trans-Kingdom Transposition of the Maize Dissociation Element

Alexander Emelyanov; Yuan Gao; Naweed Isaak Naqvi; Serguei Parinov

Transposons are very valuable tools for genetic manipulation. However, the number of transposable elements that have been suitably adapted for experimental use is insufficient and the spectrum of heterologous hosts in which they have been deployed is restricted. To date, only transposons from animal hosts have been utilized in heterologous animal species and transposons of plant origin have been used in plant genetics. There has been no experimental evidence that any of the known elements could transpose in hosts belonging to both kingdoms. Here we demonstrate that the maize Dissociation (Ds) element is capable of effective Activator (Ac) transposase-mediated transposition in the zebrafish Danio rerio, yielding remarkable germline transmission rates. In addition, mammalian cells were also found to be conducive to Ds transposition. Furthermore, we demonstrate that nuclear localization of Ac transposase is essential for genomic Ds transposition. Our results support the hypothesis that Ac/Ds elements do not rely on host-specific factors for transposition and that host factors involved in their mobility mechanism are widely conserved. Finally, even in vertebrate cells, the Ac/Ds system displays accurate transposition, large-fragment carrying capacity, high transposition frequencies, efficient germline transmission, and reporter gene expression, all of which are advantageous for various genetic applications and animal biotechnology.


Mechanisms of Development | 2001

Expression pattern of two zebrafish genes, cxcr4a and cxcr4b

Shang Wei Chong; Alexander Emelyanov; Zhiyuan Gong; Vladimir Korzh

We cloned and mapped two novel zebrafish genes, cxcr4a and cxcr4b, which are closely related to mammalian CXCR4. Expression analysis by reverse transcription-polymerase chain reaction and in situ hybridization demonstrated that these two genes are expressed in most cell lineages known to express Cxcr4 in mammals. These genes are co-expressed in lateral mesoderm and posterior midbrain. The transcripts of cxcr4a were detected in interneurons and endoderm, whereas cxcr4b was specifically expressed in sensory neurons, motoneurons and cerebellum. In the lateral mesoderm, cxcr4b transcripts appeared earlier than those of cxcr4a. Thus, the function of mammalian CXCR4 could be split between the two zebrafish genes. These genes probably derived from the genome duplication event, which occurred during the evolution of teleosts. Similar pairs of Cxcr4 may exist in other species, where genome duplication has occurred.


Developmental Biology | 2008

Mifepristone-inducible LexPR system to drive and control gene expression in transgenic zebrafish

Alexander Emelyanov; Serguei Parinov

Effective transgenesis methods have been successfully employed in many organisms including zebrafish. However, accurate spatiotemporal control of transgene expression is still difficult to achieve. Here we describe a system for chemical-inducible gene expression and demonstrate its feasibility for generating transgenic driver lines in zebrafish. The key element of this system is a hybrid transcription factor engineered by fusion of the DNA-binding domain of the bacterial LexA repressor, a truncated ligand-binding domain of the human progesterone receptor, and the activation domain of the human NF-kappaB/p65 protein. This hybrid transcription factor (LexPR transactivator) binds to the synthetic steroid, mifepristone (RU-486), and functions in a ligand-dependent manner to induce expression of the gene(s) placed under the control of a synthetic operator-promoter sequence that harbors LexA binding sites. Transgene expression is strictly controlled and can be induced at any stage of the life cycle through administration of mifepristone in the water. To demonstrate the utility of this system, we generated stable transgenic lines which allow inducible tissue-specific expression of activated K-ras(V12). Combined with the Ac/Ds-mediated transgenesis, the LexPR expression system has many potential applications in the fields of genetics and biotechnology.


Disease Models & Mechanisms | 2012

An inducible krasV12 transgenic zebrafish model for liver tumorigenesis and chemical drug screening

Anh Tuan Nguyen; Alexander Emelyanov; Chor Hui Vivien Koh; Jan M. Spitsbergen; Serguei Parinov; Zhiyuan Gong

SUMMARY Because Ras signaling is frequently activated by major hepatocellular carcinoma etiological factors, a transgenic zebrafish constitutively expressing the krasV12 oncogene in the liver was previously generated by our laboratory. Although this model depicted and uncovered the conservation between zebrafish and human liver tumorigenesis, the low tumor incidence and early mortality limit its use for further studies of tumor progression and inhibition. Here, we employed a mifepristone-inducible transgenic system to achieve inducible krasV12 expression in the liver. The system consisted of two transgenic lines: the liver-driver line had a liver-specific fabp10 promoter to produce the LexPR chimeric transactivator, and the Ras-effector line contained a LexA-binding site to control EGFP-krasV12 expression. In double-transgenic zebrafish (driver-effector) embryos and adults, we demonstrated mifepristone-inducible EGFP-krasV12 expression in the liver. Robust and homogeneous liver tumors developed in 100% of double-transgenic fish after 1 month of induction and the tumors progressed from hyperplasia by 1 week post-treatment (wpt) to carcinoma by 4 wpt. Strikingly, liver tumorigenesis was found to be ‘addicted’ to Ras signaling for tumor maintenance, because mifepristone withdrawal led to tumor regression via cell death in transgenic fish. We further demonstrated the potential use of the transparent EGFP-krasV12 larvae in inhibitor treatments to suppress Ras-driven liver tumorigenesis by targeting its downstream effectors, including the Raf-MEK-ERK and PI3K-AKT-mTOR pathways. Collectively, this mifepristone-inducible and reversible krasV12 transgenic system offers a novel model for understanding hepatocarcinogenesis and a high-throughput screening platform for anti-cancer drugs.


BMC Genomics | 2009

Genome-wide analysis of Tol2 transposon reintegration in zebrafish

Igor Kondrychyn; Marta Garcia-Lecea; Alexander Emelyanov; Sergey Parinov; Vladimir Korzh

BackgroundTol2, a member of the hAT family of transposons, has become a useful tool for genetic manipulation of model animals, but information about its interactions with vertebrate genomes is still limited. Furthermore, published reports on Tol2 have mainly been based on random integration of the transposon system after co-injection of a plasmid DNA harboring the transposon and a transposase mRNA. It is important to understand how Tol2 would behave upon activation after integration into the genome.ResultsWe performed a large-scale enhancer trap (ET) screen and generated 338 insertions of the Tol2 transposon-based ET cassette into the zebrafish genome. These insertions were generated by remobilizing the transposon from two different donor sites in two transgenic lines. We found that 39% of Tol2 insertions occurred in transcription units, mostly into introns. Analysis of the transposon target sites revealed no strict specificity at the DNA sequence level. However, Tol2 was prone to target AT-rich regions with weak palindromic consensus sequences centered at the insertion site.ConclusionOur systematic analysis of sequential remobilizations of the Tol2 transposon from two independent sites within a vertebrate genome has revealed properties such as a tendency to integrate into transcription units and into AT-rich palindrome-like sequences. This information will influence the development of various applications involving DNA transposons and Tol2 in particular.


BMC Developmental Biology | 2006

Zebrafish transgenic Enhancer TRAP line database (ZETRAP)

Benjamin Gh Choo; Igor Kondrichin; Sergey Parinov; Alexander Emelyanov; William Go; Wei-chang Toh; Vladimir Korzh

BackgroundThe zebrafish, Danio rerio, is used as a model organism to study vertebrate genetics and development. An effective enhancer trap (ET) in zebrafish using the Tol2 transposon has been demonstrated. This approach could be used to study embryogenesis of a vertebrate species in real time and with high resolution.DescriptionThe information gathered during the course of systematic investigation of many ET transgenic lines have been collected and compiled in the form of an online database – the Zebrafish Enhancer TRAP lines database (ZETRAP).ConclusionZETRAP is a web-based system that provides data and information to the scientific community about the developmental, genetic and genomic aspects of transgenic zebrafish lines obtained using Tol2 transposon-mediated transgenesis. The current version (version 1.0) contains description of 27 ET lines that express EGFP in various organs and tissues, for example, heart, brain, notochord, gut, etc. It also includes information on insertion sites of the Tol2 transposon in these lines.


Mechanisms of Development | 2001

Developmental analysis of ceruloplasmin gene and liver formation in zebrafish.

Svetlana Korzh; Alexander Emelyanov; Vladimir Korzh

Formation of the liver in zebrafish has been analyzed during normal embryogenesis using ceruloplasmin (Cp) as a specific marker. The asymmetric expression of Cp has been detected in dorsal endoderm at 16 hpf and later in the early hepatic cells in the yolk sac. The liver primordium can be detected after 32 hpf. In oep-/- mutant, which lacks dorsal endoderm, the liver fails to form. In the notochordless flh-/- mutant, the asymmetry of the liver has been lost. Therefore the notochord, dorsal endoderm and endoderm of the yolk sac play a role in liver formation in zebrafish.


Mechanisms of Development | 2001

fgfr3 and regionalization of anterior neural tube in zebrafish.

Inna Sleptsova-Friedrich; Yang Li; Alexander Emelyanov; Marc Ekker; Vladimir Korzh; Ruowen Ge

Here we describe the isolation of the zebrafish fgfr3 gene, its structure and chromosomal location. Expression in wild type embryos occurs in the axial mesoderm, the diencephalon, the anterior hindbrain and the anterior spinal cord. In the hindbrain, a differential expression of fgfr3 was detected at several levels of intensity, with the highest expression in the posterior rhombomere 1 that is morphologically distinct from the anterior part, which develops into the cerebellum. Further, analysis of fgfr3 expression in mutants deficient in the formation of the midbrain-hindbrain boundary (MHB), noi(-/-) and ace(-/-), demonstrated that in the absence of Pax2.1 and FGF8 activity, the expression domains of FGFR3 expand into the MHB, tegmentum, cerebellum and optic tectum, which are the affected structures in these mutants.


Disease Models & Mechanisms | 2011

A high level of liver-specific expression of oncogenic KrasV12 drives robust liver tumorigenesis in transgenic zebrafish

Anh Tuan Nguyen; Alexander Emelyanov; Chor Hui Vivien Koh; Jan M. Spitsbergen; Siew Hong Lam; Sinnakaruppan Mathavan; Serguei Parinov; Zhiyuan Gong

SUMMARY Human liver cancer is one of the deadliest cancers worldwide, with hepatocellular carcinoma (HCC) being the most common type. Aberrant Ras signaling has been implicated in the development and progression of human HCC, but a complete understanding of the molecular mechanisms of this protein in hepatocarcinogenesis remains elusive. In this study, a stable in vivo liver cancer model using transgenic zebrafish was generated to elucidate Ras-driven tumorigenesis in HCC. Using the liver-specific fabp10 (fatty acid binding protein 10) promoter, we overexpressed oncogenic krasV12 specifically in the transgenic zebrafish liver. Only a high level of krasV12 expression initiated liver tumorigenesis, which progressed from hyperplasia to benign and malignant tumors with activation of the Ras-Raf-MEK-ERK and Wnt–β-catenin pathways. Histological diagnosis of zebrafish tumors identified HCC as the main lesion. The tumors were invasive and transplantable, indicating malignancy of these HCC cells. Oncogenic krasV12 was also found to trigger p53-dependent senescence as a tumor suppressive barrier in the pre-neoplastic stage. Microarray analysis of zebrafish liver hyperplasia and HCC uncovered the deregulation of several stage-specific and common biological processes and signaling pathways responsible for krasV12-driven liver tumorigenesis that recapitulated the molecular hallmarks of human liver cancer. Cross-species comparisons of cancer transcriptomes further defined a HCC-specific gene signature as well as a liver cancer progression gene signature that are evolutionarily conserved between human and zebrafish. Collectively, our study presents a comprehensive portrait of molecular mechanisms during progressive Ras-induced HCC. These observations indicate the validity of our transgenic zebrafish to model human liver cancer, and this model might act as a useful platform for drug screening and identifying new therapeutic targets.

Collaboration


Dive into the Alexander Emelyanov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhiyuan Gong

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Serguei Parinov

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Anh Tuan Nguyen

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Zhen Li

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Chor Hui Vivien Koh

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Xukun Wang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jae-Hak Park

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Ju-Hee Han

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge