Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander G. Liu is active.

Publication


Featured researches published by Alexander G. Liu.


Geology | 2010

First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point formation, Newfoundland

Alexander G. Liu; Duncan McIlroy; Martin D. Brasier

Evidence for locomotion in the Precambrian fossil record is scant. Reliable Ediacaran trace fossils are all younger than 560 Ma, and consist of relatively simple horizontal burrows and trails from shallow-water deposits. Here we describe an assemblage of macroscopic locomotory traces from deep-water environments at Mistaken Point, southeastern Newfoundland, Canada, dated to ca. 565 Ma. These trails extend the record of complex trace fossils back into the earliest Avalonian biota. Our new evidence for large motile organisms on the seafloor at this time suggests that at least some of these early Ediacaran organisms, whose biological affinities are widely debated, could have been muscular and of metazoan grade.


Proceedings of the Royal Society of London B: Biological Sciences | 2014

Haootia quadriformis n. gen., n. sp., interpreted as a muscular cnidarian impression from the Late Ediacaran period (approx. 560 Ma)

Alexander G. Liu; Jack J. Matthews; Latha R. Menon; Duncan McIlroy; Martin D. Brasier

Muscle tissue is a fundamentally eumetazoan attribute. The oldest evidence for fossilized muscular tissue before the Early Cambrian has hitherto remained moot, being reliant upon indirect evidence in the form of Late Ediacaran ichnofossils. We here report a candidate muscle-bearing organism, Haootia quadriformis n. gen., n. sp., from approximately 560 Ma strata in Newfoundland, Canada. This taxon exhibits sediment moulds of twisted, superimposed fibrous bundles arranged quadrilaterally, extending into four prominent bifurcating corner branches. Haootia is distinct from all previously published contemporaneous Ediacaran macrofossils in its symmetrically fibrous, rather than frondose, architecture. Its bundled fibres, morphology, and taphonomy compare well with the muscle fibres of fossil and extant Cnidaria, particularly the benthic Staurozoa. Haootia quadriformis thus potentially provides the earliest body fossil evidence for both metazoan musculature, and for Eumetazoa, in the geological record.


BioEssays | 2017

The origin of animals: can molecular clocks and the fossil record be reconciled?

John A. Cunningham; Alexander G. Liu; Stefan Bengtson; Philip C. J. Donoghue

The evolutionary emergence of animals is one of the most significant episodes in the history of life, but its timing remains poorly constrained. Molecular clocks estimate that animals originated and began diversifying over 100 million years before the first definitive metazoan fossil evidence in the Cambrian. However, closer inspection reveals that clock estimates and the fossil record are less divergent than is often claimed. Modern clock analyses do not predict the presence of the crown‐representatives of most animal phyla in the Neoproterozoic. Furthermore, despite challenges provided by incomplete preservation, a paucity of phylogenetically informative characters, and uncertain expectations of the anatomy of early animals, a number of Neoproterozoic fossils can reasonably be interpreted as metazoans. A considerable discrepancy remains, but much of this can be explained by the limited preservation potential of early metazoans and the difficulties associated with their identification in the fossil record. Critical assessment of both records may permit better resolution of the tempo and mode of early animal evolution.


Journal of the Geological Society | 2012

A new assemblage of juvenile Ediacaran fronds from the Drook Formation, Newfoundland

Alexander G. Liu; Duncan McIlroy; Jack J. Matthews; Martin D. Brasier

A new assemblage of frondose and filamentous Ediacaran macrofossils is reported from the upper Drook Formation of Pigeon Cove, Newfoundland. The frondose forms, all less than 3 cm in length, are considered to represent the juvenile growth stages of Ediacaran organisms including Charnia spp. and Trepassia spp. This is the first report of an assemblage wholly dominated by such small juvenile rangeomorph forms, and provides insights into the ontogeny and ecology of these earliest members of the Ediacara biota. The fronds occur alongside filamentous forms with similarities to microbial taxa, and both morphotypes are considered to postdate an assemblage of large ivesheadiomorphs on the same bedding plane. If so, the assemblage represents one of the oldest documented examples of secondary community succession. The new Pigeon Cove fossils also extend the stratigraphic ranges of several key frondose taxa (Charnia masoni, Charniodiscus spp.) back into some of the oldest known macrofossil-bearing strata. These revised ranges lend support to the suggestion that the previously observed low diversity within the Drook Formation may represent a combination of taphonomic and sampling artefacts. Furthermore, this assemblage implies that the diversification of architectural morphotypes within the Ediacara biota took place earlier than hitherto suspected. Supplementary material: A document containing figures of additional juvenile rangeomorphs and filamentous specimens, a table of specimen dimensions, and a complete digitized map of the Pigeon Cove bedding plane, is available at www.geolsoc.org.uk/SUP18529.


Frontiers in Microbiology | 2015

High-dose rifampicin kills persisters, shortens treatment duration, and reduces relapse rate in vitro and in vivo

Yanmin Hu; Alexander G. Liu; Fátima Ortega-Muro; Laura Alameda-Martin; Denis A. Mitchison; Anthony R. M. Coates

Although high-dose rifampicin holds promise for improving tuberculosis control by potentially shortening treatment duration, these effects attributed to eradication of persistent bacteria are unclear. The presence of persistent Mycobacterium tuberculosis was examined using resuscitation promoting factors (RPFs) in both in vitro hypoxia and in vivo murine tuberculosis models before and after treatment with incremental doses of rifampicin. Pharmacokinetic parameters and dose-dependent profile of rifampicin in the murine model were determined. The Cornell mouse model was used to test efficacy of high-dose rifampicin in combination with isoniazid and pyrazinamide and to measure relapse rate. There were large numbers of RPF-dependent persisters in vitro and in vivo. Stationary phase cultures were tolerant to rifampicin while higher concentrations of rifampicin eradicated plate count positive but not RPF-dependent persistent bacteria. In murine infection model, incremental doses of rifampicin exhibited a dose-dependent eradication of RPF-dependent persisters. Increasing the dose of rifampicin significantly reduced the risk of antibiotic resistance emergence. In Cornell model, mice treated with high-dose rifampicin regimen resulted in faster visceral clearance; organs were M. tuberculosis free 8 weeks post-treatment compared to 14 weeks with standard-dose rifampicin regimen. Organ sterility, plate count and RPF-dependent persister negative, was achieved. There was no disease relapse compared to the standard dose regimen (87.5%). High-dose rifampicin therapy results in eradication of RPF-dependent persisters, allowing shorter treatment duration without disease relapse. Optimizing rifampicin to its maximal efficacy with acceptable side-effect profiles will provide valuable information in human studies and can potentially improve current tuberculosis chemotherapy.


Geology | 2015

Uncovering framboidal pyrite biogenicity using nano-scale CNorg mapping

David Wacey; Matt R. Kilburn; Martin Saunders; John Cliff; Charlie Kong; Alexander G. Liu; Jack J. Matthews; Martin D. Brasier

Framboidal pyrite has been used as a paleo-redox proxy and a biomarker in ancient sediments, but the interpretation of pyrite framboids can be controversial, especially where later overgrowths have obscured primary textures. Here we show how nano-scale chemical mapping of organic carbon and nitrogen (CN org ) can detect relict framboids within Precambrian pyrite grains and determine their formation mechanism. Pyrite grains associated with an Ediacaran fossil Lagerstatte from Newfoundland (ca. 560 Ma) hold significance for our understanding of taphonomy and redox history of the earliest macrofossil assemblages. They show distinct chemical zoning with respect to CN org . Relict framboids are revealed as spheroidal zones within larger pyrite grains, whereby pure pyrite microcrystals are enclosed by a mesh-like matrix of pyrite possessing elevated CN org , replicating observations from framboids growing within modern biofilms. Subsequent pyrite overgrowths also incorporated CN org from biofilms, with concentric CN org zoning showing that the availability of CN org progressively decreased during later pyrite growth. Multiple framboids are commonly cemented together by these overgrowths to form larger grains, with relict framboids only detectable in CN org maps. In situ sulfur isotope data (δ 34 S = ∼−24‰ to −15‰) show that the source of sulfur for the pyrite was also biologically mediated, most likely via a sulfate-reducing microbial metabolism within the biofilms. Relict framboids have significantly smaller diameters than the pyrite grains that enclose them, suggesting that the use of framboid diameters to infer water column paleo-redox conditions should be approached with caution. This work shows that pyrite framboids have formed within organic biofilms for at least 560 m.y., and provides a novel methodology that could readily be extended to search for such biomarkers in older rocks and potentially on other planets.


Nature | 2015

Reconstructing the reproductive mode of an Ediacaran macro-organism

Emily Geraldine Mitchell; Charlotte G. Kenchington; Alexander G. Liu; Jack J. Matthews; Nicholas J. Butterfield

Enigmatic macrofossils of late Ediacaran age (580–541 million years ago) provide the oldest known record of diverse complex organisms on Earth, lying between the microbially dominated ecosystems of the Proterozoic and the Cambrian emergence of the modern biosphere. Among the oldest and most enigmatic of these macrofossils are the Rangeomorpha, a group characterized by modular, self-similar branching and a sessile benthic habit. Localized occurrences of large in situ fossilized rangeomorph populations allow fundamental aspects of their biology to be resolved using spatial point process techniques. Here we use such techniques to identify recurrent clustering patterns in the rangeomorph Fractofusus, revealing a complex life history of multigenerational, stolon-like asexual reproduction, interspersed with dispersal by waterborne propagules. Ecologically, such a habit would have allowed both for the rapid colonization of a localized area and for transport to new, previously uncolonized areas. The capacity of Fractofusus to derive adult morphology by two distinct reproductive modes documents the sophistication of its underlying developmental biology.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Stable isotope evidence for an amphibious phase in early proboscidean evolution

Alexander G. Liu; Erik R. Seiffert; Elwyn L. Simons

The order Proboscidea includes extant elephants and their extinct relatives and is closely related to the aquatic sirenians (manatees and dugongs) and terrestrial hyracoids (hyraxes). Some analyses of embryological, morphological, and paleontological data suggest that proboscideans and sirenians shared an aquatic or semiaquatic common ancestor, but independent tests of this hypothesis have proven elusive. Here we test the hypothesis of an aquatic ancestry for advanced proboscideans by measuring δ18O in tooth enamel of two late Eocene proboscidean genera, Barytherium and Moeritherium, which are sister taxa of Oligocene-to-Recent proboscideans. The combination of low δ18O values and low δ18O standard deviations in Barytherium and Moeritherium matches the isotopic pattern seen in aquatic and semiaquatic mammals, and differs from that of terrestrial mammals. δ13C values of these early proboscideans suggest that both genera are likely to have consumed freshwater plants, although a component of C3 terrestrial vegetation cannot be ruled out. The simplest explanation for the combined evidence from isotopes, dental functional morphology, and depositional environments is that Barytherium and Moeritherium were at least semiaquatic and lived in freshwater swamp or riverine environments, where they grazed on freshwater vegetation. These results lend new support to the hypothesis that Oligocene-to-Recent proboscideans are derived from amphibious ancestors.


Geology | 2013

The oldest evidence of bioturbation on Earth: COMMENT

Martin D. Brasier; Duncan McIlroy; Alexander G. Liu; Jonathan B. Antcliffe; Latha R. Menon

Here we question the conclusions of Rogov et al. (2012), who claim to describe “the oldest evidence of bioturbation on Earth” in the form of meniscate backfi lled burrows and escape traces from late Ediacaran car- bonates of the Siberian Khatyspyt Formation. Because trace fossils can constrain early Metazoan origins, and are used to defi ne the base of the Cambrian Period (Brasier et al., 1994), such a signifi cant claim requires jus- tifi cation by careful interpretation of the material, and critical analysis, both of which appear wanting here. Although we agree that multiple biological and ecological revolutions took place during the late Ediacaran Period, we question whether those events can be tied to these problematic fossils.


Circulation | 2016

Lone Atrial Fibrillation Is Associated With Impaired Left Ventricular Energetics That Persists Despite Successful Catheter Ablation

Rohan S. Wijesurendra; Alexander G. Liu; Christian Eichhorn; Rina Ariga; Eylem Levelt; William Clarke; Christopher T. Rodgers; Theodoros D. Karamitsos; Yaver Bashir; Matthew Ginks; Kim Rajappan; Timothy R. Betts; Vanessa M. Ferreira; Stefan Neubauer; Barbara Casadei

Background: Lone atrial fibrillation (AF) may reflect a subclinical cardiomyopathy that persists after sinus rhythm (SR) restoration, providing a substrate for AF recurrence. To test this hypothesis, we investigated the effect of restoring SR by catheter ablation on left ventricular (LV) function and energetics in patients with AF but no significant comorbidities. Methods: Fifty-three patients with symptomatic paroxysmal or persistent AF and without significant valvular disease, uncontrolled hypertension, coronary artery disease, uncontrolled thyroid disease, systemic inflammatory disease, diabetes mellitus, or obstructive sleep apnea (ie, lone AF) undergoing ablation and 25 matched control subjects in SR were investigated. Magnetic resonance imaging quantified LV ejection fraction (LVEF), peak systolic circumferential strain (PSCS), and left atrial volumes and function, whereas phosphorus-31 magnetic resonance spectroscopy evaluated ventricular energetics (ratio of phosphocreatine to ATP). AF burden was determined before and after ablation by 7-day Holter monitoring; intermittent ECG event monitoring was also undertaken after ablation to investigate for asymptomatic AF recurrence. Results: Before ablation, both LV function and energetics were significantly impaired in patients compared with control subjects (LVEF, 61% [interquartile range (IQR), 52%–65%] versus 71% [IQR, 69%–73%], P<0.001; PSCS, –15% [IQR, –11 to –18%] versus −18% [IQR, –17% to –19%], P=0.002; ratio of phosphocreatine to ATP, 1.81±0.35 versus 2.05±0.29, P=0.004). As expected, patients also had dilated and impaired left atria compared with control subjects (all P<0.001). Early after ablation (1–4 days), LVEF and PSCS improved in patients recovering SR from AF (LVEF, 7.0±10%, P=0.005; PSCS, –3.5±4.3%, P=0.001) but were unchanged in those in SR during both assessments (both P=NS). At 6 to 9 months after ablation, AF burden reduced significantly (from 54% [IQR, 1.5%–100%] to 0% [IQR 0%–0.1%]; P<0.001). However, LVEF and PSCS did not improve further (both P=NS) and remained impaired compared with control subjects (P<0.001 and P=0.003, respectively). Similarly, there was no significant improvement in atrial function from before ablation (P=NS), and this remained lower than in control subjects (P<0.001). The ratio of phosphocreatine to ATP was unaffected by heart rhythm during assessment and AF burden before ablation (both P=NS). It was unchanged after ablation (P=0.57), remaining lower than in control subjects regardless of both recovery of SR and freedom from recurrent AF (P=0.006 and P=0.002, respectively). Conclusions: Patients with lone AF have impaired myocardial energetics and subtle LV dysfunction, which do not normalize after ablation. These findings suggest that AF may be the consequence (rather than the cause) of an occult cardiomyopathy, which persists despite a significant reduction in AF burden after ablation.

Collaboration


Dive into the Alexander G. Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Duncan McIlroy

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge