Alexander G. Tonevitsky
Moscow State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander G. Tonevitsky.
Cell | 2005
Mihaela Diaconu; Ute Kothe; Frank Schlünzen; Niels Fischer; Jörg Harms; Alexander G. Tonevitsky; Holger Stark; Marina V. Rodnina; Markus C. Wahl
The L7/12 stalk of the large subunit of bacterial ribosomes encompasses protein L10 and multiple copies of L7/12. We present crystal structures of Thermotoga maritima L10 in complex with three L7/12 N-terminal-domain dimers, refine the structure of an archaeal L10E N-terminal domain on the 50S subunit, and identify these elements in cryo-electron-microscopic reconstructions of Escherichia coli ribosomes. The mobile C-terminal helix alpha8 of L10 carries three L7/12 dimers in T. maritima and two in E. coli, in concordance with the different length of helix alpha8 of L10 in these organisms. The stalk is organized into three elements (stalk base, L10 helix alpha8-L7/12 N-terminal-domain complex, and L7/12 C-terminal domains) linked by flexible connections. Highly mobile L7/12 C-terminal domains promote recruitment of translation factors to the ribosome and stimulate GTP hydrolysis by the ribosome bound factors through stabilization of their active GTPase conformation.
Frontiers in Genetics | 2013
Andrey Turchinovich; Timur R. Samatov; Alexander G. Tonevitsky; Barbara Burwinkel
Nuclease resistant extracellular miRNAs have been found in all known biological fluids. The biological function of extracellular miRNAs remains questionable; however, strong evidence suggests that these miRNAs can be more than just byproducts of cellular activity. Some extracellular miRNA species might carry cell–cell signaling function during various physiological and pathological processes. In this review, we discuss the state-of-the-art in the field of intercellular miRNA transport and highlight current theories regarding the origin and the biological function of extracellular miRNAs.
Molecular Cancer | 2013
Timur R. Samatov; Alexander G. Tonevitsky; Udo Schumacher
Epithelial-mesenchymal transition (EMT) is a key process in embryonic development and metastases formation during malignant progression. This review focuses on transcriptional regulation, non-coding RNAs, alternative splicing events and cell adhesion molecules regulation during EMT. Additionally, we summarize the knowledge with regard to the small potentially druggable molecules capable of modulating EMT for cancer therapy.
Lung Cancer | 2008
E. P. Kopantzev; G.S. Monastyrskaya; T. V. Vinogradova; M. V. Zinovyeva; Marya B. Kostina; O. B. Filyukova; Alexander G. Tonevitsky; G. T. Sukhikh; E. D. Sverdlov
We, for the first time, directly compared gene expression profiles in human non-small cell lung carcinomas (NSCLCs) and in human fetal lung development. Previously reported correlations of gene expression profiles between lung cancer and lung development, deduced from matching data on mouse development and human cancer, have brought important information, but suffered from different timing of mouse and human gene expression during fetal development and fundamental differences in tumorigenesis in mice and humans. We used the suppression subtractive hybridization technique to subtract cDNAs prepared from human fetal lung samples at weeks 10-12 and 22-24 and obtained a cDNA library enriched in the transcripts more abundant at the later stage. cDNAs sequencing and RT-PCR analysis of RNAs from human fetal and adult lungs revealed 12 differentially transcribed genes: ADH1B, AQP1, FOLR1, SLC34A2, CAV1, INMT, TXNIP, TPM4, ICAM-1, HLA-DRA, EFNA1 and HLA-E. Most of these genes were found up-regulated in mice and rats at later stages than in human lung development. In surgical samples of NSCLC, these genes were down-regulated as compared to surrounding normal tissues and normal lungs, thus demonstrating opposite expression profiles for the genes up-regulated during fetal lung development.
ALTEX-Alternatives to Animal Experimentation | 2016
Uwe Marx; Tommy Andersson; Anthony Bahinski; Mario Beilmann; Sonja Beken; Flemming R. Cassee; Murat Cirit; Mardas Daneshian; Susan Fitzpatrick; Olivier Frey; Claudia Gaertner; Christoph Giese; Linda G. Griffith; Thomas Hartung; Minne B. Heringa; Julia Hoeng; Wim H. de Jong; Hajime Kojima; Jochen Kuehnl; Marcel Leist; Andreas Luch; Ilka Maschmeyer; D. A. Sakharov; Adriënne J.A.M. Sips; Thomas Steger-Hartmann; Danilo A. Tagle; Alexander G. Tonevitsky; Tewes Tralau; Sergej Tsyb; Anja van de Stolpe
The recent advent of microphysiological systems - microfluidic biomimetic devices that aspire to emulate the biology of human tissues, organs and circulation in vitro - is envisaged to enable a global paradigm shift in drug development. An extraordinary US governmental initiative and various dedicated research programs in Europe and Asia have led recently to the first cutting-edge achievements of human single-organ and multi-organ engineering based on microphysiological systems. The expectation is that test systems established on this basis would model various disease stages, and predict toxicity, immunogenicity, ADME profiles and treatment efficacy prior to clinical testing. Consequently, this technology could significantly affect the way drug substances are developed in the future. Furthermore, microphysiological system-based assays may revolutionize our current global programs of prioritization of hazard characterization for any new substances to be used, for example, in agriculture, food, ecosystems or cosmetics, thus, replacing laboratory animal models used currently. Thirty-six experts from academia, industry and regulatory bodies present here the results of an intensive workshop (held in June 2015, Berlin, Germany). They review the status quo of microphysiological systems available today against industry needs, and assess the broad variety of approaches with fit-for-purpose potential in the drug development cycle. Feasible technical solutions to reach the next levels of human biology in vitro are proposed. Furthermore, key organ-on-a-chip case studies, as well as various national and international programs are highlighted. Finally, a roadmap into the future is outlined, to allow for more predictive and regulatory-accepted substance testing on a global scale.
Trends in Biochemical Sciences | 2016
Andrey Turchinovich; Alexander G. Tonevitsky; Barbara Burwinkel
Since their discovery in 2008, extracellular miRNAs (ex-miRNAs) have persisted as one of the major themes of molecular and cellular biology. The main reason for this remarkable interest is the increasing number of research papers reporting that cell-free circulating miRNA mediates both short-range and distant communication between various cells, and could impact on diverse physiological and pathological processes. However, there are also multiple conflicting lines of evidence that challenge the biological significance of circulating ex-miRNA, suggesting that they are merely byproducts of cell activity and cell death without any particular function. This review aims to summarize these contrasting opinions and to foster further experimental validation of both paradigms.
Journal of Clinical Bioinformatics | 2013
Diana V. Maltseva; Nadezda A Khaustova; Nikita N Fedotov; Elona O Matveeva; Alexey E Lebedev; Maxim U Shkurnikov; V. V. Galatenko; Udo Schumacher; Alexander G. Tonevitsky
BackgroundQuantification and normalization of RT-qPCR data critically depends on the expression of so called reference genes. Our goal was to develop a strategy for the selection of reference genes that utilizes microarray data analysis and combines known approaches for gene stability evaluation and to select a set of appropriate reference genes for research and clinical analysis of breast samples with different receptor and cancer status using this strategy.MethodsA preliminary search of reference genes was based on high-throughput analysis of microarray datasets. The final selection and validation of the candidate genes were based on the RT-qPCR data analysis using several known methods for expression stability evaluation: comparative ∆Ct method, geNorm, NormFinder and Haller equivalence test.ResultsA set of five reference genes was identified: ACTB, RPS23, HUWE1, EEF1A1 and SF3A1. The initial selection was based on the analysis of publically available well-annotated microarray datasets containing different breast cancers and normal breast epithelium from breast cancer patients and epithelium from cancer-free patients. The final selection and validation were performed using RT-qPCR data from 39 breast cancer biopsy samples. Three genes from the final set were identified by the means of microarray analysis and were novel in the context of breast cancer assay. We showed that the selected set of reference genes is more stable in comparison not only with individual genes, but also with a system of reference genes used in commercial OncotypeDX test.ConclusionA selection of reference genes for RT-qPCR can be efficiently performed by combining a preliminary search based on the high-throughput analysis of microarray datasets and final selection and validation based on the analysis of RT-qPCR data with a simultaneous examination of different expression stability measures. The identified set of reference genes proved to be less variable and thus potentially more efficient for research and clinical analysis of breast samples comparing to individual genes and the set of reference genes used in OncotypeDX assay.
Progress in Histochemistry and Cytochemistry | 2016
Julia A. Makarova; Maxim U Shkurnikov; Daniel Wicklein; Tobias Lange; Timur R. Samatov; Andrey Turchinovich; Alexander G. Tonevitsky
MicroRNA (miRNA) is a class of small non-coding RNAs which mediate post-transcriptional gene silencing (PTGS) by sequence-specific inhibition of target mRNAs translation and/or lowering their half-lives in the cytoplasm. Together with their binding partners, Argonaute (AGO) proteins, miRNAs form cores of RNA-induced silencing complexes (RISC). Despite a substantial progress in understanding RISC structure, until recently little was known about its localization in the cell. This review is aimed to provide an overview of the emerging picture of miRNA and RISC localization and function both in the intracellular space and outside of the cell. In contrast to the common assumption that PTGS occurs in the cytoplasm, it was found to operate mainly on the membranes of the endoplasmic reticulum (ER). Besides ER membranes miRNAs were found in all main cellular compartments including nucleus, nucleolus and mitochondria where they regulate various processes including transcription, translation, alternative splicing and DNA repair. Moreover, a certain pool of miRNAs may not be associated with RISC and carry completely different functions. Finally, the discovery of cell-free miRNAs in all biological fluids suggests that miRNAs might also act as signaling molecules outside the cell, and may be utilized as biomarkers for a variety of diseases. In this review we discuss miRNA secretion mechanisms and possible pathways of cell-cell communication via miRNA-containing exosomes in vivo.
PLOS ONE | 2010
Olga V. Sysoeva; Alexander G. Tonevitsky; Jiří Wackermann
Background The present study investigates neurobiological underpinnings of individual differences in time perception. Methodology Forty-four right-handed Russian Caucasian males (18–35 years old) participated in the experiment. The polymorphism of the genes related to the activity of serotonin (5-HT) and dopamine (DA)-systems (such as 5-HTT, 5HT2a, MAOA, DAT, DRD2, COMT) was determined upon the basis of DNA analysis according to a standard procedure. Time perception in the supra-second range (mean duration 4.8 s) was studied, using the duration discrimination task and parametric fitting of psychometric functions, resulting in individual determination of the point of subjective equality (PSE). Assuming the ‘dual klepsydra model’ of internal duration representation, the PSE values were transformed into equivalent values of the parameter (kappa), which is a measure of the ‘loss rate’ of the duration representation. An association between time representation parameters (PSE and , respectively) and 5-HT-related genes was found, but not with DA-related genes. Higher ‘loss rate’ () of the cumulative duration representation were found for the carriers of genotypes characterized by higher 5-HT transmission, i.e., 1) lower 5-HT reuptake, known for the 5-HTTLPR SS polymorphism compared with LL, 2) lower 5-HT degradation, described for the ‘low expression’ variant of MAOA VNTR gene compared with ‘high expression’ variant, and 3) higher 5-HT2a receptor density, proposed for the TT polymorphism of 5-HT2a T102C gene compared with CC. Conclusion Convergent findings of the present study and previous psychopharmacological studies suggest an action path from 5-HT-activity-related genes, via activity of 5-HT in the brain, to time perception. An involvement of the DA-system in the encoding of durations in the supra-second range is questioned.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Ivan Smirnov; Eugénie Carletti; I. N. Kurkova; Florian Nachon; Yvain Nicolet; Vladimir A. Mitkevich; Heĺeǹe Deb́at; Beŕanger̀e Avalle; A. A. Belogurov; Nikita A. Kuznetsov; Andrey V. Reshetnyak; Patrick Masson; Alexander G. Tonevitsky; Natalia A. Ponomarenko; Alexander A. Makarov; Alfonso Tramontano; A. G. Gabibov
Igs offer a versatile template for combinatorial and rational design approaches to the de novo creation of catalytically active proteins. We have used a covalent capture selection strategy to identify biocatalysts from within a human semisynthetic antibody variable fragment library that uses a nucleophilic mechanism. Specific phosphonylation at a single tyrosine within the variable light-chain framework was confirmed in a recombinant IgG construct. High-resolution crystallographic structures of unmodified and phosphonylated Fabs display a 15-Å-deep two-chamber cavity at the interface of variable light (VL) and variable heavy (VH) fragments having a nucleophilic tyrosine at the base of the site. The depth and structure of the pocket are atypical of antibodies in general but can be compared qualitatively with the catalytic site of cholinesterases. A structurally disordered heavy chain complementary determining region 3 loop, constituting a wall of the cleft, is stabilized after covalent modification by hydrogen bonding to the phosphonate tropinol moiety. These features and presteady state kinetics analysis indicate that an induced fit mechanism operates in this reaction. Mutations of residues located in this stabilized loop do not interfere with direct contacts to the organophosphate ligand but can interrogate second shell interactions, because the H3 loop has a conformation adjusted for binding. Kinetic and thermodynamic parameters along with computational docking support the active site model, including plasticity and simple catalytic components. Although relatively uncomplicated, this catalytic machinery displays both stereo- and chemical selectivity. The organophosphate pesticide paraoxon is hydrolyzed by covalent catalysis with rate-limiting dephosphorylation. This reactibody is, therefore, a kinetically selected protein template that has enzyme-like catalytic attributes.