Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander Ghanem is active.

Publication


Featured researches published by Alexander Ghanem.


Neuron | 2015

Targeted Ablation, Silencing, and Activation Establish Glycinergic Dorsal Horn Neurons as Key Components of a Spinal Gate for Pain and Itch

Edmund Foster; Hendrik Wildner; Laetitia Tudeau; Sabine Haueter; William T. Ralvenius; Monika Jegen; Helge Johannssen; Ladina Hösli; Karen Haenraets; Alexander Ghanem; Karl-Klaus Conzelmann; Michael R. Bösl; Hanns Ulrich Zeilhofer

Summary The gate control theory of pain proposes that inhibitory neurons of the spinal dorsal horn exert critical control over the relay of nociceptive signals to higher brain areas. Here we investigated how the glycinergic subpopulation of these neurons contributes to modality-specific pain and itch processing. We generated a GlyT2::Cre transgenic mouse line suitable for virus-mediated retrograde tracing studies and for spatially precise ablation, silencing, and activation of glycinergic neurons. We found that these neurons receive sensory input mainly from myelinated primary sensory neurons and that their local toxin-mediated ablation or silencing induces localized mechanical, heat, and cold hyperalgesia; spontaneous flinching behavior; and excessive licking and biting directed toward the corresponding skin territory. Conversely, local pharmacogenetic activation of the same neurons alleviated neuropathic hyperalgesia and chloroquine- and histamine-induced itch. These results establish glycinergic neurons of the spinal dorsal horn as key elements of an inhibitory pain and itch control circuit.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb

Aditi Deshpande; Matteo Bergami; Alexander Ghanem; Karl-Klaus Conzelmann; Alexandra Lepier; Magdalena Götz; Benedikt Berninger

Significance New neurons are constantly added to the hippocampus and the olfactory bulb. These neurons are believed to fulfill unique functions during their early life compared with mature neurons, which may depend on the way they are connected. Here we studied the stepwise integration of new neurons within these two brain areas using a rabies-virus–based synaptic tracing tool. Our study revealed that in both areas integration follows a similar logic, with adult-born neurons incorporating first into the local circuit before becoming innervated by long-range connections. This changing pattern of presynaptic connectivity likely contributes to adult-born neurons’ functions. Identifying the connectome of adult-generated neurons is essential for understanding how the preexisting circuitry is refined by neurogenesis. Changes in the pattern of connectivity are likely to control the differentiation process of newly generated neurons and exert an important influence on their unique capacity to contribute to information processing. Using a monosynaptic rabies virus-based tracing technique, we studied the evolving presynaptic connectivity of adult-generated neurons in the dentate gyrus (DG) of the hippocampus and olfactory bulb (OB) during the first weeks of their life. In both neurogenic zones, adult-generated neurons first receive local connections from multiple types of GABAergic interneurons before long-range projections become established, such as those originating from cortical areas. Interestingly, despite fundamental similarities in the overall pattern of evolution of presynaptic connectivity, there were notable differences with regard to the development of cortical projections: although DG granule neuron input originating from the entorhinal cortex could be traced starting only from 3 to 5 wk on, newly generated neurons in the OB received input from the anterior olfactory nucleus and piriform cortex already by the second week. This early glutamatergic input onto newly generated interneurons in the OB was matched in time by the equally early innervations of DG granule neurons by glutamatergic mossy cells. The development of connectivity revealed by our study may suggest common principles for incorporating newly generated neurons into a preexisting circuit.


Neuron | 2012

A radial glia-specific role of RhoA in double cortex formation

Silvia Cappello; Christian R.J. Böhringer; Matteo Bergami; Karl-Klaus Conzelmann; Alexander Ghanem; Giulio Srubek Tomassy; Paola Arlotta; Marco Mainardi; Manuela Allegra; Matteo Caleo; Jolanda van Hengel; Cord Brakebusch; Magdalena Götz

The positioning of neurons in the cerebral cortex is of crucial importance for its function as highlighted by the severe consequences of migrational disorders in patients. Here we show that genetic deletion of the small GTPase RhoA in the developing cerebral cortex results in two migrational disorders: subcortical band heterotopia (SBH), a heterotopic cortex underlying the normotopic cortex, and cobblestone lissencephaly, in which neurons protrude beyond layer I at the pial surface of the brain. Surprisingly, RhoA(-/-) neurons migrated normally when transplanted into wild-type cerebral cortex, whereas the converse was not the case. Alterations in the radial glia scaffold are demonstrated to cause these migrational defects through destabilization of both the actin and the microtubules cytoskeleton. These data not only demonstrate that RhoA is largely dispensable for migration in neurons but also showed that defects in radial glial cells, rather than neurons, can be sufficient to produce SBH.


Neuron | 2013

The First Stage of Cardinal Direction Selectivity Is Localized to the Dendrites of Retinal Ganglion Cells

Keisuke Yonehara; Karl Farrow; Alexander Ghanem; Daniel Hillier; Kamill Balint; Miguel Teixeira; Josephine Jüttner; Masaharu Noda; Rachael L. Neve; Karl-Klaus Conzelmann; Botond Roska

Inferring the direction of image motion is a fundamental component of visual computation and essential for visually guided behavior. In the retina, the direction of image motion is computed in four cardinal directions, but it is not known at which circuit location along the flow of visual information the cardinal direction selectivity first appears. We recorded the concerted activity of the neuronal circuit elements of single direction-selective (DS) retinal ganglion cells at subcellular resolution by combining GCaMP3-functionalized transsynaptic viral tracing and two-photon imaging. While the visually evoked activity of the dendritic segments of the DS cells were direction selective, direction-selective activity was absent in the axon terminals of bipolar cells. Furthermore, the glutamate input to DS cells, recorded using a genetically encoded glutamate sensor, also lacked direction selectivity. Therefore, the first stage in which extraction of a cardinal motion direction occurs is the dendrites of DS cells.


Cell Metabolism | 2013

Inflammation-Induced Alteration of Astrocyte Mitochondrial Dynamics Requires Autophagy for Mitochondrial Network Maintenance

Elisa Motori; Julien Puyal; Nicolas Toni; Alexander Ghanem; Cristina Angeloni; Marco Malaguti; Giorgio Cantelli-Forti; Benedikt Berninger; Karl-Klaus Conzelmann; Magdalena Götz; Konstanze F. Winklhofer; Silvana Hrelia; Matteo Bergami

Accumulating evidence suggests that changes in the metabolic signature of astrocytes underlie their response to neuroinflammation, but how proinflammatory stimuli induce these changes is poorly understood. By monitoring astrocytes following acute cortical injury, we identified a differential and region-specific remodeling of their mitochondrial network: while astrocytes within the penumbra of the lesion undergo mitochondrial elongation, those located in the core-the area invaded by proinflammatory cells-experience transient mitochondrial fragmentation. In brain slices, proinflammatory stimuli reproduced localized changes in mitochondrial dynamics, favoring fission over fusion. This effect was triggered by Drp1 phosphorylation and ultimately resulted in reduced respiratory capacity. Furthermore, maintenance of the mitochondrial architecture critically depended on the induction of autophagy. Deletion of Atg7, required for autophagosome formation, prevented the reestablishment of tubular mitochondria, leading to marked reactive oxygen species accumulation and cell death. Thus, our data reveal autophagy to be essential for regenerating astrocyte mitochondrial networks during inflammation.


Science | 2015

Single-cell-initiated monosynaptic tracing reveals layer-specific cortical network modules

Adrian Wertz; Stuart Trenholm; Keisuke Yonehara; Daniel Hillier; Zoltan Raics; Marcus Leinweber; Gergely Szalay; Alexander Ghanem; Georg B. Keller; Balázs Rózsa; Karl-Klaus Conzelmann; Botond Roska

Tracing cells that project to one neuron Feature extraction is a prominent characteristic of cortical neurons involved in the early stages of sensory processing. Wertz et al. retrogradely marked an injected neuron and its direct inputs to reveal the network mechanisms that mediate their response. Neurons within each presynaptic network layer of single direction-selective cells showed similar motion direction preferences. In some networks, layer-specific functional modules were identical to the orientation preference of the postsynaptic neuron. Presynaptic neurons, however, displayed a general bias toward the stimulus feature that elicited a response in the postsynaptic neuron. Science, this issue p. 70 Orientation-sensitive visual neurons receive input from presynaptic neurons with similar stimulus preferences. Individual cortical neurons can selectively respond to specific environmental features, such as visual motion or faces. How this relates to the selectivity of the presynaptic network across cortical layers remains unclear. We used single-cell–initiated, monosynaptically restricted retrograde transsynaptic tracing with rabies viruses expressing GCaMP6s to image, in vivo, the visual motion–evoked activity of individual layer 2/3 pyramidal neurons and their presynaptic networks across layers in mouse primary visual cortex. Neurons within each layer exhibited similar motion direction preferences, forming layer-specific functional modules. In one-third of the networks, the layer modules were locked to the direction preference of the postsynaptic neuron, whereas for other networks the direction preference varied by layer. Thus, there exist feature-locked and feature-variant cortical networks.


Neuropsychopharmacology | 2016

Melanocortin 3 Receptor Signaling in Midbrain Dopamine Neurons Increases the Motivation for Food Reward

Rahul Pandit; Azar Omrani; Mieneke C. M. Luijendijk; Veronne de Vrind; Andrea J. van Rozen; Ralph J. A. Oude Ophuis; Keith M. Garner; Imre Kalló; Alexander Ghanem; Zsolt Liposits; Karl-Klaus Conzelmann; Louk J. M. J. Vanderschuren; Susanne E. la Fleur; Roger A.H. Adan

The central melanocortin (MC) system mediates its effects on food intake via MC3 (MC3R) and MC4 receptors (MC4R). Although the role of MC4R in meal size determination, satiation, food preference, and motivation is well established, the involvement of MC3R in the modulation of food intake has been less explored. Here, we investigated the role of MC3R on the incentive motivation for food, which is a crucial component of feeding behavior. Dopaminergic neurons within the ventral tegmental area (VTA) have a crucial role in the motivation for food. We here report that MC3Rs are expressed on VTA dopaminergic neurons and that pro-opiomelanocortinergic (POMC) neurons in the arcuate nucleus of the hypothalamus (Arc) innervate these VTA dopaminergic neurons. Our findings show that intracerebroventricular or intra-VTA infusion of the selective MC3R agonist γMSH increases responding for sucrose under a progressive ratio schedule of reinforcement, but not free sucrose consumption in rats. Furthermore, ex vivo electrophysiological recordings show increased VTA dopaminergic neuronal activity upon γMSH application. Consistent with a dopamine-mediated effect of γMSH, the increased motivation for sucrose after intra-VTA infusion of γMSH was blocked by pretreatment with the dopamine receptor antagonist α-flupenthixol. Taken together, we demonstrate an Arc POMC projection onto VTA dopaminergic neurons that modulates motivation for palatable food via activation of MC3R signaling.


Nature Communications | 2017

TNFα drives mitochondrial stress in POMC neurons in obesity

Chun Xia Yi; Marc Walter; Yuanqing Gao; Soledad Pitra; Beata Legutko; Stefanie Kälin; Clarita Layritz; Cristina García-Cáceres; Maximilian Bielohuby; Martin Bidlingmaier; Stephen C. Woods; Alexander Ghanem; Karl-Klaus Conzelmann; Javier E. Stern; Martin Jastroch; Matthias H. Tschöp

Consuming a calorically dense diet stimulates microglial reactivity in the mediobasal hypothalamus (MBH) in association with decreased number of appetite-curbing pro-opiomelanocortin (POMC) neurons; whether the reduction in POMC neuronal function is secondary to the microglial activation is unclear. Here we show that in hypercaloric diet-induced obese mice, persistently activated microglia in the MBH hypersecrete TNFα that in turn stimulate mitochondrial ATP production in POMC neurons, promoting mitochondrial fusion in their neurites, and increasing POMC neuronal firing rates and excitability. Specific disruption of the gene expressions of TNFα downstream signals TNFSF11A or NDUFAB1 in the MBH of diet-induced obese mice reverses mitochondrial elongation and reduces obesity. These data imply that in a hypercaloric environment, persistent elevation of microglial reactivity and consequent TNFα secretion induces mitochondrial stress in POMC neurons that contributes to the development of obesity.


The Journal of Neuroscience | 2017

Identification of Two Classes of Somatosensory Neurons That Display Resistance to Retrograde Infection by Rabies Virus

Gioele W. Albisetti; Alexander Ghanem; Edmund Foster; Karl-Klaus Conzelmann; Hanns Ulrich Zeilhofer; Hendrik Wildner

Glycoprotein-deleted rabies virus-mediated monosynaptic tracing has become a standard method for neuronal circuit mapping, and is applied to virtually all parts of the rodent nervous system, including the spinal cord and primary sensory neurons. Here we identified two classes of unmyelinated sensory neurons (nonpeptidergic and C-fiber low-threshold mechanoreceptor neurons) resistant to direct and trans-synaptic infection from the spinal cord with rabies viruses that carry glycoproteins in their envelopes and that are routinely used for infection of CNS neurons (SAD-G and N2C-G). However, the same neurons were susceptible to infection with EnvA-pseudotyped rabies virus in tumor virus A receptor transgenic mice, indicating that resistance to retrograde infection was due to impaired virus adsorption rather than to deficits in subsequent steps of infection. These results demonstrate an important limitation of rabies virus-based retrograde tracing of sensory neurons in adult mice, and may help to better understand the molecular machinery required for rabies virus spread in the nervous system. In this study, mice of both sexes were used. SIGNIFICANCE STATEMENT To understand the neuronal bases of behavior, it is important to identify the underlying neural circuitry. Rabies virus-based monosynaptic tracing has been used to identify neuronal circuits in various parts of the nervous system. This has included connections between peripheral sensory neurons and their spinal targets. These connections form the first synapse in the somatosensory pathway. Here we demonstrate that two classes of unmyelinated sensory neurons, which account for >40% of dorsal root ganglia neurons, display resistance to rabies infection. Our results are therefore critical for interpreting monosynaptic rabies-based tracing in the sensory system. In addition, identification of rabies-resistant neurons might provide a means for future studies addressing rabies pathobiology.


Development | 2017

Neuronal LRP4 regulates synapse formation in the developing CNS

Andromachi Karakatsani; Nicolás Marichal; Severino Urban; Georgios Kalamakis; Alexander Ghanem; Anna Schick; Yina Zhang; Karl-Klaus Conzelmann; Markus A. Rüegg; Benedikt Berninger; Carmen Ruiz de Almodovar; Sergio Gascón; Stephan Kröger

The low-density lipoprotein receptor-related protein 4 (LRP4) is essential in muscle fibers for the establishment of the neuromuscular junction. Here, we show that LRP4 is also expressed by embryonic cortical and hippocampal neurons, and that downregulation of LRP4 in these neurons causes a reduction in density of synapses and number of primary dendrites. Accordingly, overexpression of LRP4 in cultured neurons had the opposite effect inducing more but shorter primary dendrites with an increased number of spines. Transsynaptic tracing mediated by rabies virus revealed a reduced number of neurons presynaptic to the cortical neurons in which LRP4 was knocked down. Moreover, neuron-specific knockdown of LRP4 by in utero electroporation of LRP4 miRNA in vivo also resulted in neurons with fewer primary dendrites and a lower density of spines in the developing cortex and hippocampus. Collectively, our results demonstrate an essential and novel role of neuronal LRP4 in dendritic development and synaptogenesis in the CNS. Summary: Overexpression and knockdown of LRP4 in mouse cortical and hippocampal neurons both in vitro and in vivo reveals a key role for LRP4 in dendrite and synapse formation during development.

Collaboration


Dive into the Alexander Ghanem's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Botond Roska

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar

Daniel Hillier

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar

Keisuke Yonehara

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian Wertz

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge