Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander H. Rickard is active.

Publication


Featured researches published by Alexander H. Rickard.


Trends in Microbiology | 2003

Bacterial coaggregation: an integral process in the development of multi-species biofilms.

Alexander H. Rickard; Peter Gilbert; Nicola J. High; Paul E. Kolenbrander; Pauline S. Handley

Coaggregation is a process by which genetically distinct bacteria become attached to one another via specific molecules. Cumulative evidence suggests that such adhesion influences the development of complex multi-species biofilms. Once thought to occur exclusively between dental plaque bacteria, there are increasing reports of coaggregation between bacteria from other biofilm communities in several diverse habitats. A general role for coaggregation in the formation of multi-species biofilms is discussed.


Journal of Bacteriology | 2004

Characterization of Nutrient-Induced Dispersion in Pseudomonas aeruginosa PAO1 Biofilm

Karin Sauer; M. C. Cullen; Alexander H. Rickard; Leo Zeef; David G. Davies; P. Gilbert

The processes associated with early events in biofilm formation have become a major research focus over the past several years. Events associated with dispersion of cells from late stage biofilms have, however, received little attention. We demonstrate here that dispersal of Pseudomonas aeruginosa PAO1 from biofilms is inducible by a sudden increase in carbon substrate availability. Most efficient at inducing dispersal were sudden increases in availability of succinate > glutamate > glucose that led to approximately 80% reductions in surface-associated biofilm biomass. Nutrient-induced biofilm dispersion was associated with increased expression of flagella (fliC) and correspondingly decreased expression of pilus (pilA) genes in dispersed cells. Changes in gene expression associated with dispersion of P. aeruginosa biofilms were studied by using DNA microarray technology. Results corroborated proteomic data that showed gene expression to be markedly different between biofilms and newly dispersed cells. Gene families that were upregulated in dispersed cells included those for flagellar and ribosomal proteins, kinases, and phage PF1. Within the biofilm, genes encoding a number of denitrification pathways and pilus biosynthesis were also upregulated. Interestingly, nutrient-induced dispersion was associated with an increase in the number of Ser/Thr-phosphorylated proteins within the newly dispersed cells, and inhibition of dephosphorylation reduced the extent of nutrient-induced dispersion. This study is the first to demonstrate that dispersal of P. aeruginosa from biofilms can be induced by the addition of simple carbon sources. This study is also the first to demonstrate that dispersal of P. aeruginosa correlates with a specific dispersal phenotype.


Applied and Environmental Microbiology | 2006

Molecular characterization of subject-specific oral microflora during initial colonization of enamel.

Patricia I. Diaz; Natalia I. Chalmers; Alexander H. Rickard; Colin Kong; Craig L. Milburn; Robert J. Palmer; Paul E. Kolenbrander

ABSTRACT The initial microbial colonization of tooth surfaces is a repeatable and selective process, with certain bacterial species predominating in the nascent biofilm. Characterization of the initial microflora is the first step in understanding interactions among community members that shape ensuing biofilm development. Using molecular methods and a retrievable enamel chip model, we characterized the microbial diversity of early dental biofilms in three subjects. A total of 531 16S rRNA gene sequences were analyzed, and 97 distinct phylotypes were identified. Microbial community composition was shown to be statistically different among subjects. In all subjects, however, 4-h and 8-h communities were dominated by Streptococcus spp. belonging to the Streptococcus oralis/Streptococcus mitis group. Other frequently observed genera (comprising at least 5% of clone sequences in at least one of the six clone libraries) were Actinomyces, Gemella, Granulicatella, Neisseria, Prevotella, Rothia, and Veillonella. Fluorescence in situ hybridization (FISH) confirmed that the proportion of Streptococcus sp. sequences in the clone libraries coincided with the proportion of streptococcus probe-positive organisms on the chip. FISH also revealed that, in the undisturbed plaque, not only Streptococcus spp. but also the rarer Prevotella spp. were usually seen in small multigeneric clusters of cells. This study shows that the initial dental plaque community of each subject is unique in terms of diversity and composition. Repetitive and distinctive community composition within subjects suggests that the spatiotemporal interactions and ecological shifts that accompany biofilm maturation also occur in a subject-dependent manner.


Applied and Environmental Microbiology | 2004

Shear Rate Moderates Community Diversity in Freshwater Biofilms

Alexander H. Rickard; Andrew J. McBain; Amy T. Stead; Peter Gilbert

ABSTRACT The development of freshwater multispecies biofilms at solid-liquid interfaces occurs both in quiescent waters and under conditions of high shear rates. However, the influence of hydrodynamic shear rates on bacterial biofilm diversity is poorly understood. We hypothesized that different shear rates would significantly influence biofilm diversity and alter the relative proportions of coaggregating and autoaggregating community isolates. In order to study this hypothesis, freshwater biofilms were developed at five shear rates (<0.1 to 305 S−1) in a rotating concentric cylinder reactor fed with untreated potable water. Eubacterial diversity was assessed by denaturing gradient gel electrophoresis (DGGE) and culturing on R2A agar. Fifty morphologically distinct biofilm strains and 16 planktonic strains were isolated by culturing and identified by partial 16S rRNA gene sequencing, and their relatedness was determined by the construction of a neighbor-joining phylogenetic tree. Phylogenetic and DGGE analyses showed an inverse relationship between shear rate and bacterial diversity. An in vitro aggregation assay was used to assess the relative proportions of coaggregating and autoaggregating species from each biofilm. The highest proportion of autoaggregating bacteria was present at high shear rates (198 to 305 S−1). The intermediate shear rate (122 S−1) selected for the highest proportion of coaggregating bacteria (47%, or 17 of a possible 36 coaggregation interactions). Under static conditions (<0.1 S−1), 41 (33%) of a possible 125 coaggregation interactions were positive. Few coaggregation (3.3%) or autoaggregation (25%) interactions occurred between the 16 planktonic strains. In conclusion, these data show that shear rates affect biofilm diversity as well as the relative proportions of aggregating bacteria.


Wound Repair and Regeneration | 2011

The importance of a multifaceted approach to characterizing the microbial flora of chronic wounds.

Anne Han; Jonathan M. Zenilman; Johan H. Melendez; Mark E. Shirtliff; Alessandra Agostinho; Garth A. James; Philip S. Stewart; Emmanuel F. Mongodin; Dhana Rao; Alexander H. Rickard; Gerald S. Lazarus

Chronic wounds contain complex polymicrobial communities of sessile organisms that have been underappreciated because of limitations of standard culture techniques. The aim of this work was to combine recently developed next‐generation investigative techniques to comprehensively describe the microbial characteristics of chronic wounds. Tissue samples were obtained from 15 patients with chronic wounds presenting to the Johns Hopkins Wound Center. Standard bacteriological cultures demonstrated an average of three common bacterial species in wound samples. By contrast, high‐throughput pyrosequencing revealed increased bacterial diversity with an average of 17 genera in each wound. Data from microbial community profiling of chronic wounds were compared with published sequenced analyses of bacteria from normal skin. Increased proportions of anaerobes, Gram‐negative rods and Gram‐positive cocci were found in chronic wounds. In addition, chronic wounds had significantly lower populations of Propionibacterium compared with normal skin. Using epifluorescence microscopy, wound bacteria were visualized in highly organized thick confluent biofilms or as scattered individual bacterial cells. Fluorescent in situ hybridization allowed for the visualization of Staphylococcus aureus cells in a wound sample. Quorum‐sensing molecules were measured by bioassay to evaluate signaling patterns among bacteria in the wounds. A range of autoinducer‐2 activities was detected in the wound samples. Collectively, these data provide new insights into the identity, organization, and behavior of bacteria in chronic wounds. Such information may provide important clues to effective future strategies in wound healing.


Applied and Environmental Microbiology | 2002

Phylogenetic relationships and coaggregation ability of freshwater biofilm bacteria

Alexander H. Rickard; Sa Leach; Laurence S. Hall; Cm Buswell; Nicola J. High; Pauline S. Handley

ABSTRACT Nineteen numerically dominant heterotrophic bacteria from a freshwater biofilm were identified by 16S ribosomal DNA gene sequencing, and their coaggregation partnerships were determined. Phylogenetic trees showed that both distantly related and closely related strains coaggregated at intergeneric, intrageneric, and intraspecies levels. One strain, Blastomonas natatoria 2.1, coaggregated with all 18 other strains and may function as a bridging organism in biofilm development.


International Biodeterioration & Biodegradation | 2003

Formation of microbial biofilm in hygienic situations: A problem of control

Peter Gilbert; Andrew J. McBain; Alexander H. Rickard

Abstract The formation of microbial biofilm presents a challenge to the establishment and maintenance of hygienic conditions in public health, the home and in industry. The use of biocides is central to the hygienic control of microbial growth. Such agents, optimised for their activity against suspended populations of cells, are spectacular in their failure to control adherent biofilm communities. To date there have been limited developments to remedy the situation. Recalcitrance of biofilm communities to anti-microbial treatments has been attributed to organisation of cells within an exopolymeric matrix. This, together with the close proximity of cells, causes reaction–diffusion limitation of the access of agent from its point of application to the deeper lying cells. These cells out-survive those on the surface of the biofilm and, if the bulk of the treatment agent is depleted or the exposure transient, will multiply and divide rapidly. Nutrients also will become depleted within the core of the developing community. This leads to the establishment of spatial gradients of growth rate and redox within the community structure. Different growth-limiting nutrients will also prevail at different points in the biofilm. These conditions provide for a plethora of phenotypes within the biofilm, each reflecting the physico-chemical micro-environment of individual cells and their proximity to neighbours. Faster-growing, more susceptible cells will generally lie on the periphery of the biofilm with slow-growing recalcitrant ones being more deeply placed. The more resistant phenotypes will survive the remainder. In both instances, at the fringes of action, selection pressures will enrich the populations with the least susceptible genotype or phenotype. Repeated chronic exposure to sub-lethal treatments might then select for a resistant population that share this resistance with third party agents. Whilst neither mechanism can provide a complete explanation of recalcitrance, together they will delay eradication of the treated population and allow other selection and regulation events to occur.


Applied and Environmental Microbiology | 2000

Coaggregation between Aquatic Bacteria Is Mediated by Specific-Growth-Phase-Dependent Lectin-Saccharide Interactions

Alexander H. Rickard; Sa Leach; Cm Buswell; Nicola J. High; Pauline S. Handley

ABSTRACT Coaggregating strains of aquatic bacteria were identified by partial 16S rRNA gene sequencing. The coaggregation abilities of four strains of Blastomonas natatoria and one strain ofMicrococcus luteus varied with culture age but were always maximum in the stationary phase of growth. Each member of a coaggregating pair carried either a heat- and protease-sensitive protein (lectin) adhesin or a saccharide receptor, as coaggregation was reversed by sugars.


Journal of Applied Microbiology | 2016

Biomedical applications of nisin

Jae M. Shin; J.W. Gwak; Pachiyappan Kamarajan; J.C. Fenno; Alexander H. Rickard; Yvonne L. Kapila

Nisin is a bacteriocin produced by a group of Gram‐positive bacteria that belongs to Lactococcus and Streptococcus species. Nisin is classified as a Type A (I) lantibiotic that is synthesized from mRNA and the translated peptide contains several unusual amino acids due to post‐translational modifications. Over the past few decades, nisin has been used widely as a food biopreservative. Since then, many natural and genetically modified variants of nisin have been identified and studied for their unique antimicrobial properties. Nisin is FDA approved and generally regarded as a safe peptide with recognized potential for clinical use. Over the past two decades the application of nisin has been extended to biomedical fields. Studies have reported that nisin can prevent the growth of drug‐resistant bacterial strains, such as methicillin‐resistant Staphylococcus aureus, Streptococcus pneumoniae, Enterococci and Clostridium difficile. Nisin has now been shown to have antimicrobial activity against both Gram‐positive and Gram‐negative disease‐associated pathogens. Nisin has been reported to have anti‐biofilm properties and can work synergistically in combination with conventional therapeutic drugs. In addition, like host‐defence peptides, nisin may activate the adaptive immune response and have an immunomodulatory role. Increasing evidence indicates that nisin can influence the growth of tumours and exhibit selective cytotoxicity towards cancer cells. Collectively, the application of nisin has advanced beyond its role as a food biopreservative. Thus, this review will describe and compare studies on nisin and provide insight into its future biomedical applications.


Infection and Immunity | 2013

Tannic Acid Inhibits Staphylococcus aureus Surface Colonization in an IsaA-Dependent Manner

David E. Payne; Nicholas R. Martin; Katherine R. Parzych; Alexander H. Rickard; Adam Underwood; Blaise R. Boles

ABSTRACT Staphylococcus aureus is a human commensal and pathogen that is capable of forming biofilms on a variety of host tissues and implanted medical devices. Biofilm-associated infections resist antimicrobial chemotherapy and attack from the host immune system, making these infections particularly difficult to treat. In order to gain insight into environmental conditions that influence S. aureus biofilm development, we screened a library of small molecules for the ability to inhibit S. aureus biofilm formation. This led to the finding that the polyphenolic compound tannic acid inhibits S. aureus biofilm formation in multiple biofilm models without inhibiting bacterial growth. We present evidence that tannic acid inhibits S. aureus biofilm formation via a mechanism dependent upon the putative transglycosylase IsaA. Tannic acid did not inhibit biofilm formation of an isaA mutant. Overexpression of wild-type IsaA inhibited biofilm formation, whereas overexpression of a catalytically dead IsaA had no effect. Tannin-containing drinks like tea have been found to reduce methicillin-resistant S. aureus nasal colonization. We found that black tea inhibited S. aureus biofilm development and that an isaA mutant resisted this inhibition. Antibiofilm activity was eliminated from tea when milk was added to precipitate the tannic acid. Finally, we developed a rodent model for S. aureus throat colonization and found that tea consumption reduced S. aureus throat colonization via an isaA-dependent mechanism. These findings provide insight into a molecular mechanism by which commonly consumed polyphenolic compounds, such as tannins, influence S. aureus surface colonization.

Collaboration


Dive into the Alexander H. Rickard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jae M. Shin

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Gilbert

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul E. Kolenbrander

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge