Alexander J. A. Cobb
University of Reading
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander J. A. Cobb.
Nature | 2006
Mark B. Pepys; Gideon M. Hirschfield; Glenys A. Tennent; J. Ruth Gallimore; Melvyn C. Kahan; Vittorio Bellotti; Philip N. Hawkins; Rebecca M. Myers; Martin D. Smith; Alessandra Polara; Alexander J. A. Cobb; Steven V. Ley; J. Andrew Aquilina; Carol V. Robinson; Isam Sharif; Gillian A. Gray; Caroline Sabin; Michelle C. Jenvey; Simon Kolstoe; Darren Thompson; S.P. Wood
Complement-mediated inflammation exacerbates the tissue injury of ischaemic necrosis in heart attacks and strokes, the most common causes of death in developed countries. Large infarct size increases immediate morbidity and mortality and, in survivors of the acute event, larger non-functional scars adversely affect long-term prognosis. There is thus an important unmet medical need for new cardioprotective and neuroprotective treatments. We have previously shown that human C-reactive protein (CRP), the classical acute-phase protein that binds to ligands exposed in damaged tissue and then activates complement, increases myocardial and cerebral infarct size in rats subjected to coronary or cerebral artery ligation, respectively. Rat CRP does not activate rat complement, whereas human CRP activates both rat and human complement. Administration of human CRP to rats is thus an excellent model for the actions of endogenous human CRP. Here we report the design, synthesis and efficacy of 1,6-bis(phosphocholine)-hexane as a specific small-molecule inhibitor of CRP. Five molecules of this palindromic compound are bound by two pentameric CRP molecules, crosslinking and occluding the ligand-binding B-face of CRP and blocking its functions. Administration of 1,6-bis(phosphocholine)-hexane to rats undergoing acute myocardial infarction abrogated the increase in infarct size and cardiac dysfunction produced by injection of human CRP. Therapeutic inhibition of CRP is thus a promising new approach to cardioprotection in acute myocardial infarction, and may also provide neuroprotection in stroke. Potential wider applications include other inflammatory, infective and tissue-damaging conditions characterized by increased CRP production, in which binding of CRP to exposed ligands in damaged cells may lead to complement-mediated exacerbation of tissue injury.
Journal of the American Chemical Society | 2009
William J. Nodes; David R. Nutt; Ann M. Chippindale; Alexander J. A. Cobb
A highly stereoselective synthesis of conformationally constrained cyclic gamma-amino acids has been devised. The key step involves an intramolecular cyclization of a nitronate onto a conjugated ester, promoted by a bifunctional thiourea catalyst. This methodology has been successfully applied to generate a variety of gamma-amino acids, including some containing three contiguous stereocenters, with very high diastereoselectivity and excellent enantioselectivity. It is postulated that an interaction that is key to the success of the process is the simultaneous coordination of the thiourea functionality to both the conjugated ester and the nitronate. Finally, the synthetic utility of these compounds is demonstrated in the synthesis of two dipeptides derived from the C- and N-termini.
PLOS ONE | 2012
Gopinath Rangam; Kerstin-Maike Schmitz; Alexander J. A. Cobb; Svend K. Petersen-Mahrt
Activation induced deaminase (AID) deaminates cytosine to uracil, which is required for a functional humoral immune system. Previous work demonstrated, that AID also deaminates 5-methylcytosine (5 mC). Recently, a novel vertebrate modification (5-hydroxymethylcytosine - 5 hmC) has been implicated in functioning in epigenetic reprogramming, yet no molecular pathway explaining the removal of 5 hmC has been identified. AID has been suggested to deaminate 5 hmC, with the 5 hmU product being repaired by base excision repair pathways back to cytosine. Here we demonstrate that AID’s enzymatic activity is inversely proportional to the electron cloud size of C5-cytosine - H > F > methyl >> hydroxymethyl. This makes AID an unlikely candidate to be part of 5 hmC removal.
Chemical Science | 2012
Sundaram Rajkumar; Kenneth Shankland; Geoffrey D. Brown; Alexander J. A. Cobb
The stereoselective construction of complex molecules with multiple stereogenicity in a single step represents an extremely useful, but challenging approach to complexity in chemical synthesis. The development of organocatalytic cascade processes has proven useful in these studies, but reports where four or more stereocentres are created in a single step from just two achiral reagents are rare. Herein we report the development of a novel asymmetric domino Michael-Michael reaction between nitrohex-4-enoates and nitro-olefins to generate cyclohexanes of high complexity, including one with a quaternary centre, and three with five contiguous stereocentres. This methodology provides access to a range of useful nitrocyclohexane derivatives, including a novel class of α-lycorane-like structures.
Tetrahedron-asymmetry | 2001
Alexander J. A. Cobb; Charles M. Marson
Abstract N -Methylation of ligands with multiple stereogenic centres is shown to provide the product of the opposite configuration in significant enantiomeric excess (e.e.), in the addition of diethylzinc to aldehydes. The catalysts possess stereogenic centres appended to a trans -1,2-cyclohexanediamine core.
Organic Letters | 2013
Sundaram Rajkumar; Kenneth Shankland; Jonathan M. Goodman; Alexander J. A. Cobb
When ε-nitro-α,β-unsaturated esters are added to conjugated cyanosulfones in the presence of a bifunctional thiourea catalyst, a highly stereoselective domino reaction occurs to generate complex cyclohexanes with up to four stereogenic centers, one of which is quaternary in nature. Therefore, it is demonstrated that, like nitro compounds, sulfones can undergo an asymmetric intramolecular conjugate addition to α,β-unsaturated esters in the presence of a bifunctional organocatalyst.
Chemistry: A European Journal | 2014
Antonio Dell'Isola; Matthew McLachlan; Benjamin W. Neuman; Hawaa M. N. Al-Mullah; Alexander W. D. Binks; Warren Elvidge; Kenneth Shankland; Alexander J. A. Cobb
Abstract An efficient synthesis of spirocyclic triazolooxazine nucleosides is described. This was achieved by the conversion of β‐d‐psicofuranose to the corresponding azido‐derivative, followed by alkylation of the primary alcohol with a range of propargyl bromides, obtained by Sonogashira chemistry. The products of these reactions underwent 1,3‐dipolar addition smoothly to generate the protected spirocyclic adducts. These were easily deprotected to give the corresponding ribose nucleosides. The library of compounds obtained was investigated for its antiviral activity using MHV (mouse hepatitis virus) as a model wherein derivative 3 f showed the most promising activity and tolerability.
Tetrahedron Letters | 2002
Charles M. Marson; Afzal Khan; Rod A. Porter; Alexander J. A. Cobb
Ketones are converted with very high stereocontrol into functionalised medium rings incorporating a β-hydroxy ketone assembly via a ring-expansion mediated by tin(IV) chloride at low temperatures; either the threo or the erythro aldol products can be obtained. An asymmetric epoxidation permitted a subsequent highly enantiocontrolled semi-pinacol rearrangement.
Bioconjugate Chemistry | 2015
Adam J. R. Gadd; Francesca Greco; Alexander J. A. Cobb; Alexander D. Edwards
Therapeutic activation of Toll-like receptors (TLR) has potential for cancer immunotherapy, for augmenting the activity of antitumor monoclonal antibodies (mAbs), and for improved vaccine adjuvants. A previous attempt to specifically target TLR agonists to dendritic cells (DC) using mAbs failed because conjugation led to nonspecific binding and mAbs lost specificity. We demonstrate here for the first time the successful conjugation of a small molecule TLR7 agonist to an antitumor mAb (the anti-hCD20 rituximab) without compromising antigen specificity. The TLR7 agonist UC-1V150 was conjugated to rituximab using two conjugation methods, and yield, molecular substitution ratio, retention of TLR7 activity, and specificity of antigen binding were compared. Both conjugation methods produced rituximab-UC-1V150 conjugates with UC-1V150: rituximab ratio ranging from 1:1 to 3:1 with drug loading quantified by UV spectroscopy and drug substitution ratio verified by MALDI TOF mass spectroscopy. The yield of purified conjugates varied with conjugation method and dropped as low as 31% using a method previously described for conjugating UC-1V150 to proteins, where a bifunctional cross-linker was first reacted with rituximab and second to the TLR7 agonist. We therefore developed a direct conjugation method by producing an amine-reactive UV active version of UC-1V150, termed NHS:UC-1V150. Direct conjugation with NHS:UC-1V150 was quick and simple and gave improved conjugate yields of 65-78%. Rituximab-UC-1V150 conjugates had the expected pro-inflammatory activity in vitro (EC50 28-53 nM) with a significantly increased activity over unconjugated UC-1V150 (EC50 547 nM). Antigen binding and specificity of the rituxuimab-UC-1V150 conjugates was retained, and after incubation with human peripheral blood leukocytes, all conjugates bound strongly only to CD20-expressing B cells while no nonspecific binding to CD20-negative cells was observed. Selective targeting of Toll-like receptor activation directly within tumors or to DC is now feasible.
International Journal of Cosmetic Science | 2017
Natasha R. Arezki; Adrian C. Williams; Alexander J. A. Cobb; Marc B. Brown
This work aimed to design, synthesize and characterize replacement natural moisturizing factor (NMF) composed of modified hygroscopic linear amino acids to pre‐empt or repair skin barrier dysfunction.