Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander J. Sodt is active.

Publication


Featured researches published by Alexander J. Sodt.


Journal of the American Chemical Society | 2014

The molecular structure of the liquid-ordered phase of lipid bilayers.

Alexander J. Sodt; Michael Sandar; Klaus Gawrisch; Richard W. Pastor; Edward Lyman

Molecular dynamics simulations reveal substructures within the liquid-ordered phase of lipid bilayers. These substructures, identified in a 10 μs all-atom trajectory of liquid-ordered/liquid-disordered coexistence (L(o)/L(d)) are composed of saturated hydrocarbon chains packed with local hexagonal order and separated by interstitial regions enriched in cholesterol and unsaturated chains. Lipid hydrocarbon chain order parameters calculated from the L(o) phase are in excellent agreement with (2)H NMR measurements; the local hexagonal packing is also consistent with (1)H-MAS NMR spectra of the L(o) phase, NMR diffusion experiments, and small-angle X-ray and neutron scattering. The balance of cholesterol-rich to local hexagonal order is proposed to control the partitioning of membrane components into the L(o) regions. The latter have been frequently associated with formation of so-called rafts, platforms in the plasma membranes of cells that facilitate interaction between components of signaling pathways.


Biophysical Journal | 2015

Hexagonal Substructure and Hydrogen Bonding in Liquid-Ordered Phases Containing Palmitoyl Sphingomyelin.

Alexander J. Sodt; Richard W. Pastor; Edward Lyman

All-atom simulation data are presented for ternary mixtures of palmitoyl sphingomyelin (PSM), cholesterol, and either palmitoyl oleoyl phosphatidyl choline or dioleoyl phosphatidyl choline (DOPC). For comparison, data for a mixture of dipalmitoyl phosphatidyl choline (DPPC), cholesterol, and DOPC are also presented. Compositions corresponding to the liquid-ordered phase, the liquid-disordered phase, and coexistence of the two phases are simulated for each mixture. Within the liquid-ordered phase, cholesterol is preferentially solvated by DOPC if it is available, but if DOPC is replaced by POPC, cholesterol is preferentially solvated by PSM. In the DPPC mixtures, cholesterol interacts preferentially with the saturated chains via its smooth face, whereas in the PSM mixtures, cholesterol interacts preferentially with PSM via its rough face. Interactions between cholesterol and PSM have a very particular character: hydrogen bonding between cholesterol and the amide of PSM rotates the tilt of the amide plane, which primes it for more robust hydrogen bonding with other PSM. Cholesterol-PSM hydrogen bonding also locally modifies the hexagonal packing of hydrocarbon chains in the liquid-ordered phase of PSM mixtures.


Biophysical Journal | 2013

Bending Free Energy from Simulation: Correspondence of Planar and Inverse Hexagonal Lipid Phases

Alexander J. Sodt; Richard W. Pastor

Simulations of two distinct systems, one a planar bilayer, the other the inverse hexagonal phase, indicate consistent mechanical properties and curvature preferences, with single DOPE leaflets having a spontaneous curvature, R0 = -26 Å (experimentally ~ -29.2 Å) and DOPC leaflets preferring to be approximately flat (R0= -65 Å, experimentally ~ -87.3 Å). Additionally, a well-defined pivotal plane, where a DOPE leaflet bends at constant area, has been determined to be near the glycerol region of the lipid, consistent with the experimentally predicted plane. By examining the curvature frustration of both high and low curvature, the transferability of experimentally determined bending constants is supported. The techniques herein can be applied to predict the effect of biologically active molecules on the mechanical properties of lipid bilayers under well-controlled conditions.


Biophysical Journal | 2014

Molecular Modeling of Lipid Membrane Curvature Induction by a Peptide: More than Simply Shape

Alexander J. Sodt; Richard W. Pastor

Molecular dynamics simulations of an amphipathic helix embedded in a lipid bilayer indicate that it will induce substantial positive curvature (e.g., a tube of diameter 20 nm at 16% surface coverage). The induction is twice that of a continuum model prediction that only considers the shape of the inclusion. The discrepancy is explained in terms of the additional presence of specific interactions described only by the molecular model. The conclusion that molecular shape alone is insufficient to quantitatively model curvature is supported by contrasting molecular and continuum models of lipids with large and small headgroups (choline and ethanolamine, respectively), and of the removal of a lipid tail (modeling a lyso-lipid). For the molecular model, curvature propensity is analyzed by computing the derivative of the free energy with respect to bending. The continuum model predicts that the inclusion will soften the bilayer near the headgroup region, an effect that may weaken curvature induction. The all-atom predictions are consistent with experimental observations of the degree of tubulation by amphipathic helices and variation of the free energy of binding to liposomes.


Proteins | 2013

Prediction, refinement, and persistency of transmembrane helix dimers in lipid bilayers using implicit and explicit solvent/lipid representations: microsecond molecular dynamics simulations of ErbB1/B2 and EphA1.

Liqun Zhang; Alexander J. Sodt; Richard M. Venable; Richard W. Pastor; Matthias Buck

All‐atom simulations are carried out on ErbB1/B2 and EphA1 transmembrane helix dimers in lipid bilayers starting from their solution/DMPC bicelle NMR structures. Over the course of microsecond trajectories, the structures remain in close proximity to the initial configuration and satisfy the majority of experimental tertiary contact restraints. These results further validate CHARMM protein/lipid force fields and simulation protocols on Anton. Separately, dimer conformations are generated using replica exchange in conjunction with an implicit solvent and lipid representation. The implicit model requires further improvement, and this study investigates whether lengthy all‐atom molecular dynamics simulations can alleviate the shortcomings of the initial conditions. The simulations correct many of the deficiencies. For example, excessive helix twisting is eliminated over a period of hundreds of nanoseconds. The helix tilt, crossing angles, and dimer contacts approximate those of the NMR‐derived structure, although the detailed contact surface remains off‐set for one of two helices in both systems. Hence, even microsecond simulations are not long enough for extensive helix rotations. The alternate structures can be rationalized with reference to interaction motifs and may represent still sought after receptor states that are important in ErbB1/B2 and EphA1 signaling. Proteins 2013.


The Journal of Membrane Biology | 2015

The Curvature Induction of Surface-Bound Antimicrobial Peptides Piscidin 1 and Piscidin 3 Varies with Lipid Chain Length

Bradley S. Perrin; Alexander J. Sodt; Myriam Cotten; Richard W. Pastor

The initial steps of membrane disruption by antimicrobial peptides (AMPs) involve binding to bacterial membranes in a surface-bound (S) orientation. To evaluate the effects of lipid composition on the S state, molecular dynamics simulations of the AMPs piscidin 1 (p1) and piscidin 3 (p3) were carried out in four different bilayers: 3:1 DMPC/DMPG, 3:1 POPC/POPG, 1:1 POPE/POPG, and 4:1 POPC/cholesterol. In all cases, the addition of 1:40 piscidin caused thinning of the bilayer, though thinning was least for DMPC/DMPG. The peptides also insert most deeply into DMPC/DMPG, spanning the region from the bilayer midplane to the headgroups, and thereby only mildly disrupting the acyl chains. In contrast, the peptides insert less deeply in the palmitoyl-oleoyl containing membranes, do not reach the midplane, and substantially disrupt the chains, i.e., the neighboring acyl chains bend under the peptide, forming a basket-like conformation. Curvature free energy derivatives calculated from the simulation pressure profiles reveal that the peptides generate positive curvature in membranes with palmitoyl and oleoyl chains but negative curvature in those with myristoyl chains. Curvature inductions predicted with a continuum elastic model follow the same trends, though the effect is weaker, and a small negative curvature induction is obtained in POPC/POPG. These results do not directly speak to the relative stability of the inserted (I) states or ease of pore formation, which requires the free energy pathway between the S and I states. Nevertheless, they do highlight the importance of lipid composition and acyl chain packing.


Journal of Chemical Physics | 2012

The tension of a curved surface from simulation

Alexander J. Sodt; Richard W. Pastor

This paper demonstrates a method for calculating the tension of a system with a curved interface from a molecular dynamics simulation. To do so, the pressure of a subset of the system is determined by applying a local (virtual) mechanical deformation, fitting the response to that of a bulk fluid, and then using the Young-Laplace equation to infer the tension of the interface. The accuracy of the method is tested by calculating the local pressure of a series of water simulations at various external pressures. The tension of a simulated curved octane-water interface is computed with the method and compares well with the planar tension (≈ 46.7 dyn/cm). Finally, an ambiguity is resolved between the Harasima and Irving-Kirkwood methods of calculating the local pressure as a means for computing the tension.


Journal of Physical Chemistry A | 2015

Multiple environment single system quantum mechanical/molecular mechanical (MESS-QM/MM) calculations. 1. Estimation of polarization energies.

Alexander J. Sodt; Ye Mei; Gerhard König; Peng Tao; Ryan P. Steele; Bernard R. Brooks; Yihan Shao

In combined quantum mechanical/molecular mechanical (QM/MM) free energy calculations, it is often advantageous to have a frozen geometry for the quantum mechanical (QM) region. For such multiple-environment single-system (MESS) cases, two schemes are proposed here for estimating the polarization energy: the first scheme, termed MESS-E, involves a Roothaan step extrapolation of the self-consistent field (SCF) energy; whereas the other scheme, termed MESS-H, employs a Newton–Raphson correction using an approximate inverse electronic Hessian of the QM region (which is constructed only once). Both schemes are extremely efficient, because the expensive Fock updates and SCF iterations in standard QM/MM calculations are completely avoided at each configuration. They produce reasonably accurate QM/MM polarization energies: MESS-E can predict the polarization energy within 0.25 kcal/mol in terms of the mean signed error for two of our test cases, solvated methanol and solvated β-alanine, using the M06-2X or ωB97X-D functionals; MESS-H can reproduce the polarization energy within 0.2 kcal/mol for these two cases and for the oxyluciferin–luciferase complex, if the approximate inverse electronic Hessians are constructed with sufficient accuracy.


Journal of Virology | 2017

Palmitoylation Contributes to Membrane Curvature in Influenza A Virus Assembly and Hemagglutinin-Mediated Membrane Fusion

Petr Chlanda; Elena Mekhedov; Hang Waters; Alexander J. Sodt; Cindi Schwartz; Vinod Nair; Paul S. Blank; Joshua Zimmerberg

ABSTRACT The highly conserved cytoplasmic tail of influenza virus glycoprotein hemagglutinin (HA) contains three cysteines, posttranslationally modified by covalently bound fatty acids. While viral HA acylation is crucial in virus replication, its physico-chemical role is unknown. We used virus-like particles (VLP) to study the effect of acylation on morphology, protein incorporation, lipid composition, and membrane fusion. Deacylation interrupted HA-M1 interactions since deacylated mutant HA failed to incorporate an M1 layer within spheroidal VLP, and filamentous particles incorporated increased numbers of neuraminidase (NA). While HA acylation did not influence VLP shape, lipid composition, or HA lateral spacing, acylation significantly affected envelope curvature. Compared to wild-type HA, deacylated HA is correlated with released particles with flat envelope curvature in the absence of the matrix (M1) protein layer. The spontaneous curvature of palmitate was calculated by molecular dynamic simulations and was found to be comparable to the curvature values derived from VLP size distributions. Cell-cell fusion assays show a strain-independent failure of fusion pore enlargement among H2 (A/Japan/305/57), H3 (A/Aichi/2/68), and H3 (A/Udorn/72) viruses. In contradistinction, acylation made no difference in the low-pH-dependent fusion of isolated VLPs to liposomes: fusion pores formed and expanded, as demonstrated by the presence of complete fusion products observed using cryo-electron tomography (cryo-ET). We propose that the primary mechanism of action of acylation is to control membrane curvature and to modify HAs interaction with M1 protein, while the stunting of fusion by deacylated HA acting in isolation may be balanced by other viral proteins which help lower the energetic barrier to pore expansion. IMPORTANCE Influenza A virus is an airborne pathogen causing seasonal epidemics and occasional pandemics. Hemagglutinin (HA), a glycoprotein abundant on the virion surface, is important in both influenza A virus assembly and entry. HA is modified by acylation whose removal abrogates viral replication. Here, we used cryo-electron tomography to obtain three-dimensional images to elucidate a role for HA acylation in VLP assembly. Our data indicate that HA acylation contributes to the capability of HA to bend membranes and to HAs interaction with the M1 scaffold protein during virus assembly. Furthermore, our data on VLP and, by hypothesis, virus suggests that HA acylation, while not critical to fusion pore formation, contributes to pore expansion in a target-dependent fashion.


Journal of Chemical Theory and Computation | 2017

Characterizing Residue-Bilayer Interactions Using Gramicidin A as a Scaffold and Tryptophan Substitutions as Probes

Andrew H. Beaven; Alexander J. Sodt; Richard W. Pastor; Roger E. Koeppe; Olaf S. Andersen; Wonpil Im

Previous experiments have shown that the lifetime of a gramicidin A dimer channel (which forms from two nonconducting monomers) in a lipid bilayer is modulated by mutations of the tryptophan (Trp) residues at the bilayer-water interface. We explore this further using extensive molecular dynamics simulations of various gA dimer and monomer mutants at the Trp positions in phosphatidylcholine bilayers with different tail lengths. gA interactions with the surrounding bilayer are strongly modulated by mutating these Trp residues. There are three principal effects: eliminating residue hydrogen bonding ability (i.e., reducing the channel-monolayer coupling strength) reduces the extent of the bilayer deformation caused by the assembled dimeric channel; a residues size and geometry affects its orientation, leading to different hydrogen bonding partners; and increasing a residues hydrophobicity increases the depth of gA monomer insertion relative to the bilayer center, thereby increasing the lipid bending frustration.

Collaboration


Dive into the Alexander J. Sodt's collaboration.

Top Co-Authors

Avatar

Richard W. Pastor

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klaus Gawrisch

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Richard M. Venable

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Bernard R. Brooks

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christina M. Freeman

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge