Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander K. Opitz is active.

Publication


Featured researches published by Alexander K. Opitz.


Physical Chemistry Chemical Physics | 2014

Cation diffusion in La0.6Sr0.4CoO3−δ below 800 °C and its relevance for Sr segregation

Markus Kubicek; Ghislain M. Rupp; Stefanie Huber; Alexander Penn; Alexander K. Opitz; Johannes Bernardi; Michael Stöger-Pollach; Herbert Hutter; Jürgen Fleig

Cation diffusion was investigated in La0.6Sr0.4CoO3-δ (LSC) thin films on (100) yttria stabilized zirconia in the temperature range 625-800 °C. Isotopic ((86)Sr) and elemental tracers (Fe, Sm) were used to establish diffusion profiles of the cations in bi- and multi-layered thin films. The profiles were analyzed by time of flight-secondary ion mass spectrometry (ToF-SIMS). Grain and grain boundary diffusion coefficients of the cations were determined for LSC thin films with columnar grains - diffusion along grain boundaries is shown to be about three orders of magnitude faster than in grains. This could be verified for thin films with different grain size. A- and B-site cations showed very similar temperature dependencies with activation energies of ∼3.5 eV for bulk and ∼4.1 eV for grain boundary diffusion. The importance of cation diffusivities for surface segregation of Sr and thus for a major degradation mechanism of LSC cathodes in solid oxide fuel cells is discussed.


Angewandte Chemie | 2015

Enhancing Electrochemical Water-Splitting Kinetics by Polarization-Driven Formation of Near-Surface Iron(0): An In Situ XPS Study on Perovskite-Type Electrodes

Alexander K. Opitz; Andreas Nenning; Christoph Rameshan; Raffael Rameshan; Raoul Blume; Michael Hävecker; Axel Knop-Gericke; Günther Rupprechter; Jürgen Fleig; Bernhard Klötzer

In the search for optimized cathode materials for high-temperature electrolysis, mixed conducting oxides are highly promising candidates. This study deals with fundamentally novel insights into the relation between surface chemistry and electrocatalytic activity of lanthanum ferrite based electrolysis cathodes. For this means, near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) and impedance spectroscopy experiments were performed simultaneously on electrochemically polarized La0.6Sr0.4FeO3−δ (LSF) thin film electrodes. Under cathodic polarization the formation of Fe0 on the LSF surface could be observed, which was accompanied by a strong improvement of the electrochemical water splitting activity of the electrodes. This correlation suggests a fundamentally different water splitting mechanism in presence of the metallic iron species and may open novel paths in the search for electrodes with increased water splitting activity.


Journal of Physical Chemistry C | 2016

Ambient Pressure XPS Study of Mixed Conducting Perovskite-Type SOFC Cathode and Anode Materials under Well-Defined Electrochemical Polarization

Andreas Nenning; Alexander K. Opitz; Christoph Rameshan; Raffael Rameshan; Raoul Blume; Michael Hävecker; Axel Knop-Gericke; Günther Rupprechter; Bernhard Klötzer; Jürgen Fleig

The oxygen exchange activity of mixed conducting oxide surfaces has been widely investigated, but a detailed understanding of the corresponding reaction mechanisms and the rate-limiting steps is largely still missing. Combined in situ investigation of electrochemically polarized model electrode surfaces under realistic temperature and pressure conditions by near-ambient pressure (NAP) XPS and impedance spectroscopy enables very surface-sensitive chemical analysis and may detect species that are involved in the rate-limiting step. In the present study, acceptor-doped perovskite-type La0.6Sr0.4CoO3-δ (LSC), La0.6Sr0.4FeO3-δ (LSF), and SrTi0.7Fe0.3O3-δ (STF) thin film model electrodes were investigated under well-defined electrochemical polarization as cathodes in oxidizing (O2) and as anodes in reducing (H2/H2O) atmospheres. In oxidizing atmosphere all materials exhibit additional surface species of strontium and oxygen. The polaron-type electronic conduction mechanism of LSF and STF and the metal-like mechanism of LSC are reflected by distinct differences in the valence band spectra. Switching between oxidizing and reducing atmosphere as well as electrochemical polarization cause reversible shifts in the measured binding energy. This can be correlated to a Fermi level shift due to variations in the chemical potential of oxygen. Changes of oxidation states were detected on Fe, which appears as FeIII in oxidizing atmosphere and as mixed FeII/III in H2/H2O. Cathodic polarization in reducing atmosphere leads to the reversible formation of a catalytically active Fe0 phase.


Nature Materials | 2017

Real-time impedance monitoring of oxygen reduction during surface modification of thin film cathodes

Ghislain M. Rupp; Alexander K. Opitz; Andreas Nenning; Andreas Limbeck; Jürgen Fleig

Improvement of solid oxide fuel cells strongly relies on the development of cathode materials with high catalytic activity for the oxygen reduction reaction. Excellent activity was found for perovskite-type oxides such as La1-xSrxCoO3-δ (LSC), but performance degradation, probably caused by surface composition changes, hinders exploitation of the full potential of LSC. This study reveals that the potentially very high activity of the LSC surface can be traced back to few very active sites. Already tiny amounts of SrO, for example, 4% of a monolayer, deposited on an LSC surface, lead to severe deactivation. Co, on the other hand, causes (re-)activation, suggesting that active sites are strongly related to Co being present at the surface. These insights could be gained by a novel method to measure changes of the electrochemical performance of thin film electrodes in situ, while modifying their surface: impedance spectroscopy measurements during deposition of well-defined fractions of monolayers of Sr-, Co- and La-oxides by single laser pulses in a pulsed laser deposition chamber.


Journal of Physical Chemistry C | 2015

Water-Gas Shift and Methane Reactivity on Reducible Perovskite-Type Oxides

Ramona Thalinger; Alexander K. Opitz; Sandra Kogler; Marc Heggen; Daniel G. Stroppa; Daniela Schmidmair; R. J. Tappert; Jürgen Fleig; Bernhard Klötzer; Simon Penner

Comparative (electro)catalytic, structural, and spectroscopic studies in hydrogen electro-oxidation, the (inverse) water-gas shift reaction, and methane conversion on two representative mixed ionic–electronic conducting perovskite-type materials La0.6Sr0.4FeO3−δ (LSF) and SrTi0.7Fe0.3O3−δ (STF) were performed with the aim of eventually correlating (electro)catalytic activity and associated structural changes and to highlight intrinsic reactivity characteristics as a function of the reduction state. Starting from a strongly prereduced (vacancy-rich) initial state, only (inverse) water-gas shift activity has been observed on both materials beyond ca. 450 °C but no catalytic methane reforming or methane decomposition reactivity up to 600 °C. In contrast, when starting from the fully oxidized state, total methane oxidation to CO2 was observed on both materials. The catalytic performance of both perovskite-type oxides is thus strongly dependent on the degree/depth of reduction, on the associated reactivity of the remaining lattice oxygen, and on the reduction-induced oxygen vacancies. The latter are clearly more reactive toward water on LSF, and this higher reactivity is linked to the superior electrocatalytic performance of LSF in hydrogen oxidation. Combined electron microscopy, X-ray diffraction, and Raman measurements in turn also revealed altered surface and bulk structures and reactivities.


Materials | 2016

The Sulphur Poisoning Behaviour of Gadolinia Doped Ceria Model Systems in Reducing Atmospheres

Matthias Gerstl; Andreas Nenning; Riza Iskandar; Veronika Rojek-Wöckner; Martin Bram; Herbert Hutter; Alexander K. Opitz

An array of analytical methods including surface area determination by gas adsorption using the Brunauer, Emmett, Teller (BET) method, combustion analysis, XRD, ToF-SIMS, TEM and impedance spectroscopy has been used to investigate the interaction of gadolinia doped ceria (GDC) with hydrogen sulphide containing reducing atmospheres. It is shown that sulphur is incorporated into the GDC bulk and might lead to phase changes. Additionally, high concentrations of silicon are found on the surface of model composite microelectrodes. Based on these data, a model is proposed to explain the multi-facetted electrochemical degradation behaviour encountered during long term electrochemical measurements. While electrochemical bulk properties of GDC stay largely unaffected, the surface polarisation resistance is dramatically changed, due to silicon segregation and reaction with adsorbed sulphur.


ACS Applied Materials & Interfaces | 2017

Surface Chemistry of Perovskite-Type Electrodes During High Temperature CO2 Electrolysis Investigated by Operando Photoelectron Spectroscopy

Alexander K. Opitz; Andreas Nenning; Christoph Rameshan; Markus Kubicek; Thomas Götsch; Raoul Blume; Michael Hävecker; Axel Knop-Gericke; Günther Rupprechter; Bernhard Klötzer; Juergen Fleig

Any substantial move of energy sources from fossil fuels to renewable resources requires large scale storage of excess energy, for example, via power to fuel processes. In this respect electrochemical reduction of CO2 may become very important, since it offers a method of sustainable CO production, which is a crucial prerequisite for synthesis of sustainable fuels. Carbon dioxide reduction in solid oxide electrolysis cells (SOECs) is particularly promising owing to the high operating temperature, which leads to both improved thermodynamics and fast kinetics. Additionally, compared to purely chemical CO formation on oxide catalysts, SOECs have the outstanding advantage that the catalytically active oxygen vacancies are continuously formed at the counter electrode, and move to the working electrode where they reactivate the oxide surface without the need of a preceding chemical (e.g., by H2) or thermal reduction step. In the present work, the surface chemistry of (La,Sr)FeO3−δ and (La,Sr)CrO3−δ based perovskite-type electrodes was studied during electrochemical CO2 reduction by means of near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) at SOEC operating temperatures. These measurements revealed the formation of a carbonate intermediate, which develops on the oxide surface only upon cathodic polarization (i.e., under sufficiently reducing conditions). The amount of this adsorbate increases with increasing oxygen vacancy concentration of the electrode material, thus suggesting vacant oxygen lattice sites as the predominant adsorption sites for carbon dioxide. The correlation of carbonate coverage and cathodic polarization indicates that an electron transfer is required to form the carbonate and thus to activate CO2 on the oxide surface. The results also suggest that acceptor doped oxides with high electron concentration and high oxygen vacancy concentration may be particularly suited for CO2 reduction. In contrast to water splitting, the CO2 electrolysis reaction was not significantly affected by metallic particles, which were exsolved from the perovskite electrodes upon cathodic polarization. Carbon formation on the electrode surface was only observed under very strong cathodic conditions, and the carbon could be easily removed by retracting the applied voltage without damaging the electrode, which is particularly promising from an application point of view.


ChemPhysChem | 2018

CO2 Reduction on the Pre-reduced Mixed Ionic-Electronic Conducting Perovskites La0.6Sr-0.4FeO3-δ and SrTi0.7Fe0.3O3-δ

Matthias Grünbacher; Thomas Götsch; Alexander K. Opitz; Bernhard Klötzer; Simon Penner

The activity of the pre-reduced perovskites La0.6 Sr0.4 FeO3-δ (LSF64) and SrTi0.7 Fe0.3 O3-δ (STF73) for the CO2 reduction to CO was investigated with special focus on the reactivity of oxide-dissolved hydrogen. This is of particular interest in hydrogen solid-oxide electrolysis cell (H-SOEC) technology, where proton-conducting ceramics are used and the reaction 2e- +2H+ +CO2 →CO+H2 O is of central importance. To clarify if hydrogen dissolved in LSF64 and STF73 partakes in the CO2 reduction, temperature-programmed reduction (TPR) in H2 , followed by temperature-programmed reoxidation (TPO) in CO2 and, moreover, temperature-programmed desorption (TPD) of ad- and absorbed species were utilized. The experiments reveal that 50 mol % of the CO2 is converted by hydrogen dissolved in STF73 and reacts quantitatively. On the other hand, LSF64 converts less than 20 mol % of CO2 via dissolved hydrogen and a residual of bulk OH is still detectable after CO2 -TPO.


New Journal of Chemistry | 2016

Thioether functionalised gallium and indium alkoxides in materials synthesis

Felix Biegger; Christoph Rameshan; Alexander K. Opitz; Julian Noll; Thomas Haunold; Heinrich Lang; Sven Barth

The thermolysis behaviour of a new class of metal alkoxides containing a thioether functionality in the alkyl chain is described. Homoleptic gallium alkoxides with sufficient volatility have been investigated in low pressure chemical vapour deposition (CVD) showing the potency of the thioether to act as a sulphidisation agent during decomposition of the precursor leading to Ga2O3−xSx films. Similar thermolysis experiments were conducted in high boiling point solvents leading to Ga2O3−xSx and In2O3−xSx particles. The thermolysis products have been investigated by SEM, EDX, XRD and XPS. Moreover, initial tests of the electrical transport properties of amorphous Ga2O3−xSx films have been conducted, showing increased conductivity and altered activation energies for the sulphur containing films.


ACS Applied Energy Materials | 2018

In Situ Impedance Analysis of Oxygen Exchange on Growing La0.6Sr0.4CoO3−δ Thin Films

Ghislain M. Rupp; Markus Kubicek; Alexander K. Opitz; Juergen Fleig

The further development of solid oxide fuel and electrolysis cells (SOFC/SOEC) strongly relies on research activities dealing with electrode materials. Recent studies showed that under operating conditions many perovskite-type oxide electrodes are prone to changes of their surface composition, leading to severe changes of their electrochemical performance. This results in a large scatter of data in literature and complicates comparison of materials. Moreover, little information is available on the potentially excellent properties of surfaces immediately after preparation, that is, before any degradation by exposure to other gas compositions or temperature changes. Here, we introduce in situ impedance spectroscopy during pulsed laser deposition (IPLD) as a new method for electrochemical analysis of mixed ionic and electronic conducting (MIEC) thin films during growth. First, this approach can truly reveal the properties of as-prepared MIEC electrode materials, since it avoids any alterations of their surface between preparation and investigation. Second, the measurements during growth give information on the thickness dependence of film properties. This technique is applied to La0.6Sr0.4CoO3−δ (LSC), one of the most promising SOFC/SOEC oxygen electrode material. From the earliest stages of LSC film deposition on yttria-stabilized zirconia (YSZ) to a fully grown thin film of 100 nm thickness, data are gained on the oxygen exchange kinetics and the defect chemistry of LSC. A remarkable reproducibility is found in repeated film growth experiments, not only for the bulk related chemical capacitance but also for the surface related polarization resistance (±10%). Polarization resistances of as-prepared LSC films are extraordinarily low (2.0 Ω cm2 in 40 μbar O2 at 600 °C). LSC films on YSZ and on La0.95Sr0.05Ga0.95Mg0.05O3−δ (LSGM) single crystals exhibit significantly different electrochemical properties, possibly associated with the tensile strain of LSC on LSGM.

Collaboration


Dive into the Alexander K. Opitz's collaboration.

Top Co-Authors

Avatar

Jürgen Fleig

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Markus Kubicek

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Herbert Hutter

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Andreas Nenning

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Rameshan

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Bram

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tobias M. Huber

Vienna University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge