Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander Knohl is active.

Publication


Featured researches published by Alexander Knohl.


Nature | 2005

Europe-wide reduction in primary productivity caused by the heat and drought in 2003

Ph. Ciais; Markus Reichstein; Nicolas Viovy; A. Granier; Jérôme Ogée; Vincent Allard; Marc Aubinet; Nina Buchmann; Chr. Bernhofer; Arnaud Carrara; F. Chevallier; N. de Noblet; Andrew D. Friend; Pierre Friedlingstein; Thomas Grünwald; Bernard Heinesch; P. Keronen; Alexander Knohl; Gerhard Krinner; Denis Loustau; Giovanni Manca; Giorgio Matteucci; F. Miglietta; Jean-Marc Ourcival; D. Papale; Kim Pilegaard; Serge Rambal; Günther Seufert; Jean-François Soussana; M. J. Sanz

Future climate warming is expected to enhance plant growth in temperate ecosystems and to increase carbon sequestration. But although severe regional heatwaves may become more frequent in a changing climate, their impact on terrestrial carbon cycling is unclear. Here we report measurements of ecosystem carbon dioxide fluxes, remotely sensed radiation absorbed by plants, and country-level crop yields taken during the European heatwave in 2003. We use a terrestrial biosphere simulation model to assess continental-scale changes in primary productivity during 2003, and their consequences for the net carbon balance. We estimate a 30 per cent reduction in gross primary productivity over Europe, which resulted in a strong anomalous net source of carbon dioxide (0.5 Pg C yr-1) to the atmosphere and reversed the effect of four years of net ecosystem carbon sequestration. Our results suggest that productivity reduction in eastern and western Europe can be explained by rainfall deficit and extreme summer heat, respectively. We also find that ecosystem respiration decreased together with gross primary productivity, rather than accelerating with the temperature rise. Model results, corroborated by historical records of crop yields, suggest that such a reduction in Europes primary productivity is unprecedented during the last century. An increase in future drought events could turn temperate ecosystems into carbon sources, contributing to positive carbon-climate feedbacks already anticipated in the tropics and at high latitudes.


Nature | 2008

Old-growth forests as global carbon sinks

Sebastiaan Luyssaert; Ernst-Detlef Schulze; Annett Börner; Alexander Knohl; Dominik Hessenmöller; Beverly E. Law; Philippe Ciais; John Grace

Old-growth forests remove carbon dioxide from the atmosphere at rates that vary with climate and nitrogen deposition. The sequestered carbon dioxide is stored in live woody tissues and slowly decomposing organic matter in litter and soil. Old-growth forests therefore serve as a global carbon dioxide sink, but they are not protected by international treaties, because it is generally thought that ageing forests cease to accumulate carbon. Here we report a search of literature and databases for forest carbon-flux estimates. We find that in forests between 15 and 800 years of age, net ecosystem productivity (the net carbon balance of the forest including soils) is usually positive. Our results demonstrate that old-growth forests can continue to accumulate carbon, contrary to the long-standing view that they are carbon neutral. Over 30 per cent of the global forest area is unmanaged primary forest, and this area contains the remaining old-growth forests. Half of the primary forests (6 × 108 hectares) are located in the boreal and temperate regions of the Northern Hemisphere. On the basis of our analysis, these forests alone sequester about 1.3 ± 0.5 gigatonnes of carbon per year. Thus, our findings suggest that 15 per cent of the global forest area, which is currently not considered when offsetting increasing atmospheric carbon dioxide concentrations, provides at least 10 per cent of the global net ecosystem productivity. Old-growth forests accumulate carbon for centuries and contain large quantities of it. We expect, however, that much of this carbon, even soil carbon, will move back to the atmosphere if these forests are disturbed.


Agricultural and Forest Meteorology | 2003

Large carbon uptake by an unmanaged 250-year-old deciduous forest in Central Germany

Alexander Knohl; Ernst-Detlef Schulze; Olaf Kolle; Nina Buchmann

Unmanaged forests at a late stage of successional development are considered to be insignificant as carbon sinks, since in theory, assimilation is thought to be balanced by respiration. However, little experimental evidence for this hypothesis exists so far for forests at the ecosystem level. Therefore, we performed continuous eddy covariance measurements of carbon dioxide over an unmanaged beech forest in the Hainich National Park in Central Germany as part of the EU project CARBOEUROFLUX. This forest shows typical characteristics of an ‘advanced’ forest with large dead wood pools, a diverse stand structure and a wide tree age class distribution, up to 250 years. This forest was a large carbon sink over 2 years, with 494 g C m −2 per year in 2000 and 49 0gCm −2 per year in 2001. Daytime summer fluxes were strongly controlled by photosynthetic photon flux density ( R 2 = 0.7–0.9), with minor effects of the ratio of diffuse to total downward radiation or the vapor pressure deficit. Nighttime CO 2 fluxes were mainly controlled by soil temperature ( R 2 = 0.8) and soil moisture. In addition, high nighttime CO2 fluxes (4–6 mol m −2 s −1 ) were found directly before and during bud break in spring as well as just after leaf fall of both years (2000 and 2001), reflecting stand physiology corresponding to phenological changes, independent of soil temperature. Additional wind profile measurements at five heights within the canopy revealed a decoupling of above and below canopy air flow under conditions of low friction velocity ( u ∗ < 0. 4ms −1 ), probably indicating down slope drainage. In conclusion, unmanaged forests at a comparatively late stage of successional development can still act as significant carbon sinks with large implications for forest management practice and negotiations about biological sinks within the Kyoto Protocol.


Functional Plant Biology | 2009

Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses

Lucas A. Cernusak; Guillaume Tcherkez; Claudia Keitel; William K. Cornwell; Louis S. Santiago; Alexander Knohl; Margaret M. Barbour; David G. Williams; Peter B. Reich; David S. Ellsworth; Todd E. Dawson; Howard Griffiths; Graham D. Farquhar; Ian J. Wright

Non-photosynthetic, or heterotrophic, tissues in C3 plants tend to be enriched in 13C compared with the leaves that supply them with photosynthate. This isotopic pattern has been observed for woody stems, roots, seeds and fruits, emerging leaves, and parasitic plants incapable of net CO2 fixation. Unlike in C3 plants, roots of herbaceous C4 plants are generally not 13C-enriched compared with leaves. We review six hypotheses aimed at explaining this isotopic pattern in C3 plants: (1) variation in biochemical composition of heterotrophic tissues compared with leaves; (2) seasonal separation of growth of leaves and heterotrophic tissues, with corresponding variation in photosynthetic discrimination against 13C; (3) differential use of day v. night sucrose between leaves and sink tissues, with day sucrose being relatively 13C-depleted and night sucrose 13C-enriched; (4) isotopic fractionation during dark respiration; (5) carbon fixation by PEP carboxylase; and (6) developmental variation in photosynthetic discrimination against 13C during leaf expansion. Although hypotheses (1) and (2) may contribute to the general pattern, they cannot explain all observations. Some evidence exists in support of hypotheses (3) through to (6), although for hypothesis (6) it is largely circumstantial. Hypothesis (3) provides a promising avenue for future research. Direct tests of these hypotheses should be carried out to provide insight into the mechanisms causing within-plant variation in carbon isotope composition.


Global Biogeochemical Cycles | 2009

Temporal and among-site variability of inherent water use efficiency at the ecosystem level

Christian Beer; Philippe Ciais; Markus Reichstein; Dennis D. Baldocchi; Beverly E. Law; D. Papale; J. F. Soussana; C. Ammann; Nina Buchmann; Dorothea Frank; Damiano Gianelle; Ivan A. Janssens; Alexander Knohl; Barbara Köstner; E.J. Moors; Olivier Roupsard; Hans Verbeeck; Timo Vesala; Christopher A. Williams; G. Wohlfahrt

Half-hourly measurements of the net exchanges of carbon dioxide and water vapor between terrestrial ecosystems and the atmosphere provide estimates of gross primary production (GPP) and evapotranspiration (ET) at the ecosystem level and on daily to annual timescales. The ratio of these quantities represents ecosystem water use efficiency. Its multiplication with mean daylight vapor pressure deficit (VPD) leads to a quantity which we call “inherent water use efficiency” (IWUE*). The dependence of IWUE* on environmental conditions indicates possible adaptive adjustment of ecosystem physiology in response to a changing environment. IWUE* is analyzed for 43 sites across a range of plant functional types and climatic conditions. IWUE* increases during short-term moderate drought conditions. Mean annual IWUE* varied by a factor of 3 among all sites. This is partly explained by soil moisture at field capacity, particularly in deciduous broad-leaved forests. Canopy light interception sets the upper limits to canopy photosynthesis, and explains half the variance in annual IWUE* among herbaceous ecosystems and evergreen needle-leaved forests. Knowledge of IWUE* offers valuable improvement to the representation of carbon and water coupling in ecosystem process models


Global Biogeochemical Cycles | 2011

Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales

Youngryel Ryu; Dennis D. Baldocchi; Hideki Kobayashi; Catharine van Ingen; Jie Li; T. Andy Black; Jason Beringer; Eva van Gorsel; Alexander Knohl; Beverly E. Law; Olivier Roupsard

linear relations with measurements of solar irradiance (r 2 = 0.95, relative bias: 8%), gross primary productivity (r 2 = 0.86, relative bias: 5%) and evapotranspiration (r 2 = 0.86, relative bias: 15%) in data from 33 flux towers that cover seven plant functional types across arctic to tropical climatic zones. A sensitivity analysis revealed that the gross primary productivity and evapotranspiration computed in BESS were most sensitive to leaf area index and solar irradiance, respectively. We quantified the mean global terrestrial estimates of gross primary productivity and evapotranpiration between 2001 and 2003 as 118 � 26 PgC yr � 1 and 500 � 104 mm yr � 1 (equivalent to 63,000 � 13,100 km 3 yr � 1 ), respectively. BESS-derived gross primary productivity and evapotranspiration estimates were consistent with the estimates from independent machine-learning, data-driven products, but the process-oriented structure has the advantage of diagnosing sensitivity of mechanisms. The process-based BESS is able to offer gridded biophysical variables everywhere from local to the total global land scales with an 8-day interval over multiple years.


Nature Climate Change | 2014

Land management and land-cover change have impacts of similar magnitude on surface temperature

Sebastiaan Luyssaert; Mathilde Jammet; Paul C. Stoy; Stephen Estel; Julia Pongratz; Eric Ceschia; Galina Churkina; Axel Don; Karl-Heinz Erb; Morgan Ferlicoq; Bert Gielen; Thomas Grünwald; R. A. Houghton; Katja Klumpp; Alexander Knohl; Thomas E. Kolb; Tobias Kuemmerle; Tuomas Laurila; Annalea Lohila; Denis Loustau; Matthew J. McGrath; Patrick Meyfroidt; E.J. Moors; Kim Naudts; Kim Novick; Juliane Otto; Kim Pilegaard; Casimiro Pio; Serge Rambal; Corinna Rebmann

The direct effects of land-cover change on surface climate are increasingly well understood, but fewer studies have investigated the consequences of the trend towards more intensive land management practices. Now, research investigating the biophysical effects of temperate land-management changes reveals a net warming effect of similar magnitude to that driven by changing land cover.


Tree Physiology | 2010

The influence of climate and fructification on the inter-annual variability of stem growth and net primary productivity in an old-growth, mixed beech forest

M. Mund; Werner L. Kutsch; Christian Wirth; Tiemo Kahl; Alexander Knohl; M. V. Skomarkova; Ernst-Detlef Schulze

The periodic production of large seed crops by trees (masting) and its interaction with stem growth has long been the objective of tree physiology research. However, very little is known about the effects of masting on stem growth and total net primary productivity (NPP) at the stand scale. This study was conducted in an old-growth, mixed deciduous forest dominated by Fagus sylvatica (L.) and covers the period from 2003 to 2007, which comprised wet, dry and regular years as well as two masts of Fagus and one mast of the co-dominant tree species Fraxinus excelsior (L.) and Acer pseudoplatanus (L.). We combined analyses of weather conditions and stem growth at the tree level (inter- and intra-annual) with fruit, stem and leaf production, and estimates of total NPP at the stand level. Finally, we compared the annual demand of carbon for biomass production with net canopy assimilation (NCA), derived from eddy covariance flux measurements, chamber measurements and modelling. Annual stem growth of Fagus was most favoured by warm periods in spring and that of Fraxinus by high precipitation in June. For stem growth of Acer and for fruit production, no significant relationships with mean weather conditions were found. Intra-annual stem growth of all species was strongly reduced when the relative plant-available water in soil dropped below a threshold of about 60% between May and July. The inter-annual variations of NCA, total NPP and leaf NPP at the stand level were low (mean values 1313, 662 and 168 g C m(-2) year(-1), respectively), while wood and fruit production varied more and contrarily (wood: 169-241 g C m(-2) year(-1); fruits: 21-142 g C m(-2) year(-1)). In all years, an annual surplus of newly assimilated carbon was calculated (on average 100 g C m(-2) year(-1)). The results suggest that stem growth is generally not limited by insufficient carbon resources; only in mast years a short-term carbon shortage may occur in spring. In contrast to common assumption, stem growth alone is not a sufficient proxy for total biomass production or the control of carbon sequestration by weather extremes.


Ecological Applications | 2008

Advection and resulting CO2 exchange uncertainty in a tall forest in central Germany.

Werner L. Kutsch; Olaf Kolle; Corinna Rebmann; Alexander Knohl; Waldemar Ziegler; Ernst-Detlef Schulze

Potential losses by advection were estimated at Hainich Forest, Thuringia, Germany, where the tower is located at a gentle slope. Three approaches were used: (1) comparing nighttime eddy covariance fluxes to an independent value of total ecosystem respiration by bottom-up modeling of the underlying processes, (2) direct measurements of a horizontal CO2 gradient and horizontal wind speed at 2 m height in order to calculate horizontal advection, and (3) direct measurements of a vertical CO2 gradient and a three-dimensional wind profile in order to calculate vertical advection. In the first approach, nighttime eddy covariance measurements were compared to independent values of total ecosystem respiration by means of bottom-up modeling of the underlying biological processes. Turbulent fluxes and storage term were normalized to the fluxes calculated by the bottom-up model. Below a u(*) threshold of 0.6 m/s the normalized turbulent fluxes decreased with decreasing u(*), but the flux to the storage increased only up to values less than 20% of the modeled flux at low turbulence. Horizontal advection was measured by a horizontal CO2 gradient over a distance of 130 m combined with horizontal wind speed measurements. Horizontal advection occurred at most of the evenings independently of friction velocity above the canopy. Nevertheless, horizontal advection was higher when u(*) was low. The peaks of horizontal advection correlated with changes in temperature. A full mass balance including turbulent fluxes, storage, and horizontal and vertical advection resulted in an increase of spikes and scatter but seemed to generally improve the results from the flux measurements. The comparison of flux data with independent bottom-up modeling results as well as the direct measurements resulted in strong indications that katabatic flows along the hill slope during evening and night reduces the measured apparent ecosystem respiration rate. In addition, anabatic flows may occur during the morning. We conclude that direct measurements of horizontal and vertical advection are highly necessary at sites located even on gentle hill slopes.


Oecologia | 2009

Intra-annual variability of anatomical structure and δ13C values within tree rings of spruce and pine in alpine, temperate and boreal Europe

Eugene A. Vaganov; Ernst-Detlef Schulze; Marina V. Skomarkova; Alexander Knohl; Willi A. Brand; Christiane Roscher

Tree-ring width, wood density, anatomical structure and 13C/12C ratios expressed as δ13C-values of whole wood of Picea abies were investigated for trees growing in closed canopy forest stands. Samples were collected from the alpine Renon site in North Italy, the lowland Hainich site in Central Germany and the boreal Flakaliden site in North Sweden. In addition, Pinus cembra was studied at the alpine site and Pinus sylvestris at the boreal site. The density profiles of tree rings were measured using the DENDRO-2003 densitometer, δ13C was measured using high-resolution laser-ablation-combustion-gas chromatography-infra-red mass spectrometry and anatomical characteristics of tree rings (tracheid diameter, cell-wall thickness, cell-wall area and cell-lumen area) were measured using an image analyzer. Based on long-term statistics, climatic variables, such as temperature, precipitation, solar radiation and vapor pressure deficit, explained <20% of the variation in tree-ring width and wood density over consecutive years, while 29–58% of the variation in tree-ring width were explained by autocorrelation between tree rings. An intensive study of tree rings between 1999 and 2003 revealed that tree ring width and δ13C-values of whole wood were significantly correlated with length of the growing season, net radiation and vapor pressure deficit. The δ13C-values were not correlated with precipitation or temperature. A highly significant correlation was also found between δ13C of the early wood of one year and the late wood of the previous year, indicating a carry-over effect of the growing conditions of the previous season on current wood production. This latter effect may explain the high autocorrelation of long-term tree-ring statistics. The pattern, however, was complex, showing stepwise decreases as well as stepwise increases in the δ13C between late wood and early wood. The results are interpreted in the context of the biochemistry of wood formation and its linkage to storage products. It is clear that the relations between δ13C and tree-ring width and climate are multi-factorial in seasonal climates.

Collaboration


Dive into the Alexander Knohl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

E.J. Moors

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Ana Meijide

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Grünwald

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonardo Montagnani

Free University of Bozen-Bolzano

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge