Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander Koch is active.

Publication


Featured researches published by Alexander Koch.


Critical Care | 2010

Influence of genetic variations in TLR4 and TIRAP/Mal on the course of sepsis and pneumonia and cytokine release: an observational study in three cohorts.

Oliver Kumpf; Evangelos J. Giamarellos-Bourboulis; Alexander Koch; Lutz Hamann; Maria Mouktaroudi; Djin-Ye Oh; Eicke Latz; Eva Lorenz; David A. Schwartz; Bart Ferwerda; Christina Routsi; Chryssanthi Skalioti; Bart Jan Kullberg; Jos W. M. van der Meer; Peter M. Schlag; Mihai G. Netea; Kai Zacharowski; Ralf R. Schumann

IntroductionIt has been proposed that individual genetic variation contributes to the course of severe infections and sepsis. Recent studies of single nucleotide polymorphisms (SNPs) within the endotoxin receptor and its signaling system showed an association with the risk of disease development. This study aims to examine the response associated with genetic variations of TLR4, the receptor for bacterial LPS, and a central intracellular signal transducer (TIRAP/Mal) on cytokine release and for susceptibility and course of severe hospital acquired infections in distinct patient populations.MethodsThree intensive care units in tertiary care university hospitals in Greece and Germany participated. 375 and 415 postoperative patients and 159 patients with ventilator associated pneumonia (VAP) were included. TLR4 and TIRAP/Mal polymorphisms in 375 general surgical patients were associated with risk of infection, clinical course and outcome. In two prospective studies, 415 patients following cardiac surgery and 159 patients with newly diagnosed VAP predominantly caused by Gram-negative bacteria were studied for cytokine levels in-vivo and after ex-vivo monocyte stimulation and clinical course.ResultsPatients simultaneously carrying polymorphisms in TIRAP/Mal and TLR4 and patients homozygous for the TIRAP/Mal SNP had a significantly higher risk of severe infections after surgery (odds ratio (OR) 5.5; confidence interval (CI): 1.34 - 22.64; P = 0.02 and OR: 7.3; CI: 1.89 - 28.50; P < 0.01 respectively). Additionally we found significantly lower circulating cytokine levels in double-mutant individuals with ventilator associated pneumonia and reduced cytokine production in an ex-vivo monocyte stimulation assay, but this difference was not apparent in TIRAP/Mal-homozygous patients. In cardiac surgery patients without infection, the cytokine release profiles were not changed when comparing different genotypes.ConclusionsCarriers of mutations in sequential components of the TLR signaling system may have an increased risk for severe infections. Patients with this genotype showed a decrease in cytokine release when infected which was not apparent in patients with sterile inflammation following cardiac surgery.


Biochemical and Biophysical Research Communications | 2011

Activation of sphingosine kinase 2 is an endogenous protective mechanism in cerebral ischemia

Waltraud Pfeilschifter; Bożena Czech-Zechmeister; Marian Sujak; Ana Mirceska; Alexander Koch; Abdelhaq Rami; Helmuth Steinmetz; Christian Foerch; Andrea Huwiler; Josef Pfeilschifter

The two ubiquitously expressed sphingosine kinases (SphK) 1 and 2 are key regulators of the sphingolipid signaling pathway. Despite the formation of an identical messenger, i.e. sphingosine 1-phosphate (S1P), they exert strikingly different functions. Particularly, SphK2 is necessary for the phosphorylation of the sphingosine analog fingolimod (FTY720), which is protective in rodent stroke models. Using gene deficient mice lacking either SphK1 or SphK2, we investigated the role of the two lipid kinases in experimental stroke. We performed 2h transient middle cerebral artery occlusion (tMCAO) and analyzed lesion size and neurological function after 24h. Treatment groups received 1mg/kg FTY720. Neutrophil infiltration, microglia activation, mRNA and protein expression of SphK1, SphK2 and the S1P(1) receptor after tMCAO were studied. Genetic deletion of SphK2 but not SphK1 increased ischemic lesion size and worsened neurological function after tMCAO. The protective effect of FTY720 was conserved in SphK1(-/-) mice but not in SphK2(-/-) mice. This suggests that SphK2 activity is an important endogenous protective mechanism in cerebral ischemia and corroborates that the protective effect of FTY720 is mediated via phospho-FTY720.


PLOS ONE | 2013

FTY720 Treatment in the Convalescence Period Improves Functional Recovery and Reduces Reactive Astrogliosis in Photothrombotic Stroke

Robert Brunkhorst; Nathalie Kanaan; Alexander Koch; Nerea Ferreirós; Ana Mirceska; Pia Zeiner; Michel Mittelbronn; Amin Derouiche; Helmuth Steinmetz; Christian Foerch; Josef Pfeilschifter; Waltraud Pfeilschifter

Background The Sphingosine-1-phosphate (S1P) signaling pathway is known to influence pathophysiological processes within the brain and the synthetic S1P analog FTY720 has been shown to provide neuroprotection in experimental models of acute stroke. However, the effects of a manipulation of S1P signaling at later time points after experimental stroke have not yet been investigated. We examined whether a relatively late initiation of a FTY720 treatment has a positive effect on long-term neurological outcome with a focus on reactive astrogliosis, synapses and neurotrophic factors. Methods We induced photothrombotic stroke (PT) in adult C57BL/6J mice and allowed them to recover for three days. Starting on post-stroke day 3, mice were treated with FTY720 (1 mg/kg b.i.d.) for 5 days. Behavioral outcome was observed until day 31 after photothrombosis and periinfarct cortical tissue was analyzed using tandem mass-spectrometry, TaqMan®analysis and immunofluorescence. Results FTY720 treatment results in a significantly better functional outcome persisting up to day 31 after PT. This is accompanied by a significant decrease in reactive astrogliosis and larger post-synaptic densities as well as changes in the expression of vascular endothelial growth factor α (VEGF α). Within the periinfarct cortex, S1P is significantly increased compared to healthy brain tissue. Conclusion Besides its known neuroprotective effects in the acute phase of experimental stroke, the initiation of FTY720 treatment in the convalescence period has a positive impact on long-term functional outcome, probably mediated through reduced astrogliosis, a modulation in synaptic morphology and an increased expression of neurotrophic factors.


Cellular Physiology and Biochemistry | 2013

Sphingosine 1-phosphate in renal diseases

Alexander Koch; Josef Pfeilschifter; Andrea Huwiler

Because of its highly bioactive properties sphingosine 1-phosphate (S1P) is an attractive target for the treatment of several diseases. Since the expression of sphingosine kinases as well as S1P receptors was demonstrated in the kidney, questions about the physiological and pathophysiological functions of S1P in this organ have been raised. In this review, we summarize the current state of knowledge about S1P-mediated functions in the kidney. A special focus is put on S1P modulated signal transduction in renal glomerular and tubular cells and consequences for the development and treatment of several kidney diseases, diabetic nephropathy, glomerulonephritis, ischemia-reperfusion injury, as well as for Wilms tumor progression.


Biochimica et Biophysica Acta | 2014

Sphingosine 1-phosphate (S1P) induces COX-2 expression and PGE2 formation via S1P receptor 2 in renal mesangial cells.

Anja Völzke; Alexander Koch; Dagmar Meyer zu Heringdorf; Andrea Huwiler; Josef Pfeilschifter

Understanding the mechanisms of sphingosine 1-phosphate (S1P)-induced cyclooxygenase (COX)-2 expression and prostaglandin E2 (PGE2) formation in renal mesangial cells may provide potential therapeutic targets to treat inflammatory glomerular diseases. Thus, we evaluated the S1P-dependent signaling mechanisms which are responsible for enhanced COX-2 expression and PGE2 formation in rat mesangial cells under basal conditions. Furthermore, we investigated whether these mechanisms are operative in the presence of angiotensin II (Ang II) and of the pro-inflammatory cytokine interleukin-1β (IL-1β). Treatment of rat and human mesangial cells with S1P led to concentration-dependent enhanced expression of COX-2. Pharmacological and molecular biology approaches revealed that the S1P-dependent increase of COX-2 mRNA and protein expression was mediated via activation of S1P receptor 2 (S1P2). Further, inhibition of Gi and p42/p44 MAPK signaling, both downstream of S1P2, abolished the S1P-induced COX-2 expression. In addition, S1P/S1P2-dependent upregulation of COX-2 led to significantly elevated PGE2 levels, which were further potentiated in the presence of Ang II and IL-1β. A functional consequence downstream of S1P/S1P2 signaling is mesangial cell migration that is stimulated by S1P. Interestingly, inhibition of COX-2 by celecoxib and SC-236 completely abolished the migratory response. Overall, our results demonstrate that extracellular S1P induces COX-2 expression via activation of S1P2 and subsequent Gi and p42/p44 MAPK-dependent signaling in renal mesangial cells leading to enhanced PGE2 formation and cell migration that essentially requires COX-2. Thus, targeting S1P/S1P2 signaling pathways might be a novel strategy to treat renal inflammatory diseases.


Biochemical Journal | 2012

Evidence for a link between histone deacetylation and Ca2+ homoeostasis in sphingosine-1-phosphate lyase-deficient fibroblasts

Katja Ihlefeld; Ralf Frederik Claas; Alexander Koch; Josef Pfeilschifter; Dagmar Meyer zu Heringdorf

Embryonic fibroblasts from S1P (sphingosine-1-phosphate) lyase-deficient mice [Sgpl1-/- MEFs (mouse embryonic fibroblasts)] are characterized by intracellular accumulation of S1P, elevated cytosolic [Ca2+]i and enhanced Ca2+ storage. Since S1P, produced by sphingosine kinase 2xa0in the nucleus of MCF-7 cells, inhibited HDACs (histone deacetylases) [Hait, Allegood, Maceyka, Strub, Harikumar, Singh, Luo, Marmorstein, Kordula, Milstein et al. (2009) Science 325, 1254-1257], in the present study we analysed whether S1P accumulated in the nuclei of S1P lyase-deficient MEFs and caused HDAC inhibition. Interestingly, nuclear concentrations of S1P were disproportionally elevated in Sgpl1-/- MEFs. HDAC activity was reduced, acetylation of histone 3-Lys9 was increased and the HDAC-regulated gene p21 cyclin-dependent kinase inhibitor was up-regulated in these cells. Furthermore, the expression of HDAC1 and HDAC3 was reduced in Sgpl1-/- MEFs. In wild-type MEFs, acetylation of histone 3-Lys9 was increased by the S1P lyase inhibitor 4-deoxypyridoxine. The non-specific HDAC inhibitor trichostatin A elevated basal [Ca2+]i and enhanced Ca2+ storage, whereas the HDAC1/2/3 inhibitor MGCD0103 elevated basal [Ca2+]i without influence on Ca2+ storage in wild-type MEFs. Overexpression of HDAC1 or HDAC2 reduced the elevated basal [Ca2+]i in Sgpl1-/- MEFs. Taken together, S1P lyase-deficiency was associated with elevated nuclear S1P levels, reduced HDAC activity and down-regulation of HDAC isoenzymes. The decreased HDAC activity in turn contributed to the dysregulation of Ca2+ homoeostasis, particularly to the elevated basal [Ca2+]i, in Sgpl1-/- MEFs.


British Journal of Pharmacology | 2012

Thiazolidinedione-dependent activation of sphingosine kinase 1 causes an anti-fibrotic effect in renal mesangial cells

Alexander Koch; Anja Völzke; Christin Wünsche; D Meyer zu Heringdorf; Andrea Huwiler; Josef Pfeilschifter

PPARγ agonists [thiazolidinediones (TZDs)] are known to exert anti‐fibrotic effects in the kidney. In addition, we previously demonstrated that sphingosine kinase 1 (SK‐1) and intracellular sphingosine‐1‐phosphate (S1P), by reducing the expression of connective tissue growth factor (CTGF), have a protective role in the fibrotic process.


Biochimica et Biophysica Acta | 2013

PPARγ agonists upregulate sphingosine 1-phosphate (S1P) receptor 1 expression, which in turn reduces S1P-induced [Ca2 +]i increases in renal mesangial cells

Alexander Koch; Anja Völzke; Bianca Puff; Kira Blankenbach; Dagmar Meyer zu Heringdorf; Andrea Huwiler; Josef Pfeilschifter

We previously identified peroxisome proliferator-activated receptor gamma (PPARγ) agonists (thiazolidinediones, TZDs) as modulators of the sphingolipid metabolism in renal mesangial cells. TZDs upregulated sphingosine kinase 1 (SK-1) and increased the formation of intracellular sphingosine 1-phosphate (S1P), which in turn reduced the expression of pro-fibrotic connective tissue growth factor. Since S1P also acts as extracellular ligand at specific S1P receptors (S1PR, S1P1-5), we investigated here the effect of TZDs on S1PR expression in mesangial cells and evaluated the functional consequences by measuring S1P-induced increases in intracellular free Ca(2+) concentration ([Ca(2+)]i). Treatment with two different TZDs, troglitazone and rosiglitazone, enhanced S1P1 mRNA and protein expression in rat mesangial cells, whereas S1P2-5 expression levels were not altered. Upregulation of S1P1 mRNA upon TZD treatment was also detected in human mesangial cells and mouse glomeruli. PPARγ antagonism and promoter studies revealed that the TZD-dependent S1P1 mRNA induction involved a functional PPAR response element in the S1P1 promoter. Pharmacological approaches disclosed that S1P-induced [Ca(2+)]i increases in rat mesangial cells were predominantly mediated by S1P2 and S1P3. Interestingly, the transcriptional upregulation of S1P1 by TZDs resulted in a reduction of S1P-induced [Ca(2+)]i increases, which was reversed by the S1P1/3 antagonist VPC-23019, the protein kinase C (PKC) inhibitor PKC-412, and by S1P1 siRNA. These data suggest that PPARγ-dependent upregulation of S1P1 leads to an inhibition of S1P-induced Ca(2+) signaling in a PKC-dependent manner. Overall, these results reveal that TZDs not only modulate intracellular S1P levels but also regulate S1PR signaling by increasing S1P1 expression in mesangial cells.


Journal of Lipid Research | 2015

Upregulation of ABC transporters contributes to chemoresistance of sphingosine 1-phosphate lyase-deficient fibroblasts.

Katja Ihlefeld; Hans Vienken; Ralf Frederik Claas; Kira Blankenbach; Agnes Rudowski; Michael ter Braak; Alexander Koch; Paul P. Van Veldhoven; Josef Pfeilschifter; Dagmar Meyer zu Heringdorf

Sphingosine 1-phosphate (S1P) is an extra- and intracellular mediator that regulates cell growth, survival, migration, and adhesion in many cell types. S1P lyase is the enzyme that irreversibly cleaves S1P and thereby constitutes the ultimate step in sphingolipid catabolism. It has been reported previously that embryonic fibroblasts from S1P lyase-deficient mice (Sgpl1−/−-MEFs) are resistant to chemotherapy-induced apoptosis through upregulation of B cell lymphoma 2 (Bcl-2) and Bcl-2-like 1 (Bcl-xL). Here, we demonstrate that the transporter proteins Abcc1/MRP1, Abcb1/MDR1, Abca1, and spinster-2 are upregulated in Sgpl1−/−-MEFs. Furthermore, the cells efficiently sequestered the substrates of Abcc1 and Abcb1, fluo-4 and doxorubicin, in subcellular compartments. In line with this, Abcb1 was localized mainly at intracellular vesicular structures. After 16 h of incubation, wild-type MEFs had small apoptotic nuclei containing doxorubicin, whereas the nuclei of Sgpl1−/−-MEFs appeared unchanged and free of doxorubicin. A combined treatment with the inhibitors of Abcb1 and Abcc1, zosuquidar and MK571, respectively, reversed the compartmentalization of doxorubicin and rendered the cells sensitive to doxorubicin-induced apoptosis. It is concluded that upregulation of multidrug resistance transporters contributes to the chemoresistance of S1P lyase-deficient MEFs.


Critical Care | 2011

Genetic variation of TLR4 influences immunoendocrine stress response: an observational study in cardiac surgical patients

Alexander Koch; Lutz Hamann; Matthias Schott; Olaf Boehm; Dirk Grotemeyer; Muhammed Kurt; Carsten Schwenke; Ralf R. Schumann; Stefan R. Bornstein; Kai Zacharowski

IntroductionSystemic inflammation (for example, following surgery) involves Toll-like receptor (TLR) signaling and leads to an endocrine stress response. This study aims to investigate a possible influence of TLR2 and TLR4 single nucleotide polymorphisms (SNPs) on perioperative adrenocorticotropic hormone (ACTH) and cortisol regulation in serum of cardiac surgical patients. To investigate the link to systemic inflammation in this context, we additionally measured 10 different cytokines in the serum.MethodsA total of 338 patients admitted for elective cardiac surgery were included in this prospective observational clinical cohort study. Genomic DNA of patients was screened for TLR2 and TLR4 SNPs. Serum concentrations of ACTH, cortisol, interferon (IFN)-γ, interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, tumor necrosis factor (TNF)-α and granulocyte macrophage-colony stimulating factor (GM-CSF) were determined before surgery, immediately post surgery and on the first postoperative day.ResultsThirteen patients were identified as TLR2 SNP carriers, 51 as TLR4 SNP carriers and 274 patients as non-carriers. Basal levels of ACTH, cortisol and cytokines did not differ among groups. In all three groups a significant, transient perioperative rise of cortisol could be observed. However, only in the non-carrier group this was accompanied by a significant ACTH rise. TLR4 SNP carriers had significant lower ACTH levels compared to non-carriers (mean (95% confidence intervals)) non-carriers: 201.9 (187.7 to 216.1) pg/ml; TLR4 SNP carriers: 149.9 (118.4 to 181.5) pg/ml; TLR2 SNP carriers: 176.4 ((110.5 to 242.3) pg/ml). Compared to non-carriers, TLR4 SNP carriers showed significant lower serum IL-8, IL-10 and GM-CSF peaks (mean (95% confidence intervals)): IL-8: non-carriers: 42.6 (36.7 to 48.5) pg/ml, TLR4 SNP carriers: 23.7 (10.7 to 36.8) pg/ml; IL-10: non-carriers: 83.8 (70.3 to 97.4) pg/ml, TLR4 SNP carriers: 54.2 (24.1 to 84.2) pg/ml; GM-CSF: non-carriers: 33.0 (27.8 to 38.3) pg/ml, TLR4 SNP carriers: 20.2 (8.6 to 31.8) pg/ml). No significant changes over time or between the groups were found for the other cytokines.ConclusionsRegulation of the immunoendocrine stress response during systemic inflammation is influenced by the presence of a TLR4 SNP. Cardiac surgical patients carrying this genotype showed decreased serum concentrations of ACTH, IL-8, IL-10 and GM-CSF. This finding might have impact on interpreting previous and designing future trials on diagnosing and modulating immunoendocrine dysregulation (for example, adrenal insufficiency) during systemic inflammation and sepsis.

Collaboration


Dive into the Alexander Koch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anja Völzke

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Mirceska

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Christian Foerch

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Christin Wünsche

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Helmuth Steinmetz

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Kai Zacharowski

Goethe University Frankfurt

View shared research outputs
Researchain Logo
Decentralizing Knowledge