Alexander Krivokharchenko
Max Delbrück Center for Molecular Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander Krivokharchenko.
Reproduction | 2009
Vladimir Isachenko; I. Lapidus; Evgenia Isachenko; Alexander Krivokharchenko; Rolf Kreienberg; M. Woriedh; Michael Bader; Juergen Weiss
Cryopreservation as a process can be divided into two methods: conventional freezing and vitrification. The high effectiveness of vitrification in comparison with conventional freezing for human oocytes and embryos is shown, whereas data on human ovarian tissue are limited. The aim of this study was to compare the safety and effectiveness of conventional freezing and vitrification of human ovarian tissue. Ovarian tissue fragments from 15 patients were transported to the laboratory within 22-25 h in a special, isolated transport box that can maintain a stable temperature of between 5 and 8 degrees C for 36 h. Small pieces of ovarian tissue (0.3-1 x 1-1.5 x 0.7-1 mm) were randomly distributed into three groups: group 1, fresh pieces immediately after receiving transport box (control); group 2, pieces after vitrification; and group 3, pieces after conventional freezing. After thawing, all the pieces were cultured in vitro. The viability and proliferative capacity of the tissue by in vitro production of hormones, development of follicles, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene expression after culture were evaluated. A difference between freezing and vitrification was not found in respect to hormonal activity and follicle quality. The supernatants showed 17-beta estradiol concentrations of 365, 285, and 300 pg/ml respectively, and progesterone concentrations of 3.82, 1.99, and 1.95 ng/ml respectively. It was detected that 95, 80, and 83% follicles respectively were morphologically normal. The molecular biological analysis, however, demonstrated that the GAPDH gene expression in ovarian tissue after vitrification was dramatically decreased in contrast to conventional freezing. For cryopreservation of human ovarian tissue, conventional freezing is more promising than vitrification, because of higher developmental potential.
Biology of Reproduction | 2003
Alexander Krivokharchenko; Elena Popova; Ioulia Zaitseva; Larissa Vilianovich; Detlev Ganten; Michael Bader
Abstract In an effort to establish cloning technology for the rat, we tested several methods (electric stimulation, treatment with ethanol or strontium) for the parthenogenetic activation of rat oocytes. We observed marked individual differences among rats of the outbred Wistar strain in their ability to yield activatable oocytes. These differences were independent of the activation protocol and may be due to a genetic predisposition that is crucial for the parthenogenetic activation of oocytes. The activation of oocytes was dependent upon the time between superovulation of the donor animal and the collection of the embryos. Aged oocytes (derived about 24 h after superovulation) were more prone to activation by each method than were younger oocytes, and some even underwent spontaneous activation without treatment and exhibited pronuclear formation and blastocyst development. All activation methods were effective in generating parthenogenetic rat embryos, and rat parthenotes developed until implantation. However, in general, short-term (15 min) and long-term (2 h) strontium treatment was superior to stimulation by ethanol or electric pulse for parthenogenetic activation. These results will be helpful in achieving successful cloning in the rat.
Theriogenology | 2003
Vladimir Isachenko; J.L. Alabart; Maria Dattena; Frank Nawroth; Pietro Cappai; Eugenia Isachenko; M.J. Cocero; Julio Olivera; Alberto Roche; Carla Accardo; Alexander Krivokharchenko; J. Folch
This study was designed to test the efficiency of recently developed vitrification technology followed by microscope-free thawing and transfer of sheep embryos. In a first set of experiments, in vivo derived embryos at the morula to blastocyst stage were frozen in an automated freezer in ethylene glycol, and after thawing and removal of cryoprotectants, were transferred to recipient ewes according to a standard protocol (control group). A second group of embryos were loaded into open-pulled straws (OPS) and plunged into liquid nitrogen after exposure at room temperature to the media: 10% glycerol (G) for 5 min, 10% G+20% ethylene glycol (EG) for 5 min, 25% G+25% EG for 30s; or 10% EG+10% DMSO for 3 min, 20% EG+20% DMSO+0.3M trehalose for 30s. The OPS were thawed by plunging into tubes containing 0.5M trehalose. After this rapid thawing, the embryos were directly transferred using OPS as the catheter for the transplantation process. In a second set of experiments, in vivo derived and in vitro produced expanded blastocysts were vitrified in OPS and then transferred as described above. The lambing rates recorded (59% for the conventionally cryopreserved in vivo derived embryos, 56% for the vitrified in vivo derived embryos, and 20% for the vitrified in vitro produced embryos), suggest the suitability of the vitrification technique for the transfer of embryos obtained both in vivo and in vitro. This simple technology gives rise to a high embryo survival rate and will no doubt have applications in rearing sheep or other small ruminants.
Theriogenology | 2003
Vladimir Isachenko; J. Folch; Eugenia Isachenko; Frank Nawroth; Alexander Krivokharchenko; Gábor Vajta; Maria Dattena; J.L. Alabart
The aim of the present investigation was to test the effectiveness of a method of vitrifying rat embryos at different stages of development (from early morula to expanding blastocyst) in a double vitrification procedure. Wistar rat embryos were vitrified and warmed in super-fine open-pulled straws (SOPS). Before being plunged into liquid nitrogen, the embryos were exposed to 40% ethylene glycol+0.75 M sucrose in TCM-199+20% fetal calf serum (FCS) for 20s at 38 degrees C. Subsequent warming and direct rehydration of the embryos was conducted in culture medium (TCM-199+20% FCS) at 38 degrees C. Early morula stage (7-10 blastomeres) embryos (n=358) were vitrified, warmed and cultured in vitro (EM group). Batches of these embryos were then cryopreserved again (revitrified) at the early blastocyst (EB group, n=87), blastocyst (B group, n=93) or expanding blastocyst stage (ExpB group, n=73). After the first (EM group) and repeated (EB, B, and ExpB groups) vitrification procedures, developmental rates of 81, 83, 34 and 76%, respectively were achieved (for EM-EB-ExpB P>0.1; for EM, EB, ExpB-B P<0.005). Our data demonstrate the possibility of using the described identical protocol for the SOPS vitrification of rat early morulae, early blastocysts and expanding blastocysts. The low survival rate of blastocysts subjected to double vitrification requires further investigation.
PLOS ONE | 2011
Franziska Rother; Tatiana Shmidt; Elena Popova; Alexander Krivokharchenko; Stefanie Hügel; Larissa Vilianovich; Michael Ridders; Katja Tenner; Natalia Alenina; Matthias Köhler; Enno Hartmann; Michael Bader
Importin α is involved in the nuclear import of proteins. It also contributes to spindle assembly and nuclear membrane formation, however, the underlying mechanisms are poorly understood. Here, we studied the function of importin α7 by gene targeting in mice and show that it is essential for early embryonic development. Embryos lacking importin α7 display a reduced ability for the first cleavage and arrest completely at the two-cell stage. We show that the zygotic genome activation is severely disturbed in these embryos. Our findings indicate that importin α7 is a new member of the small group of maternal effect genes.
Transgenic Research | 2008
Elena Popova; Brit Rentzsch; Michael Bader; Alexander Krivokharchenko
Model organisms expressing fluorescent proteins are important tools for research. The present study was performed to generate and characterize a new line of green fluorescent protein (GFP) transgenic rats for use as a model in experimental embryological research. We injected a GFP expression vector into 135 zygotes of the Sprague-Dawley (SD) rat strain. Embryo transfer of 103 surviving embryos resulted in the production of 35 offspring (33.9%) and two of them were transgenic (5.7%). Two transgenic rat lines that ubiquitously express GFP under the control of the cytomegalovirus-enhancer/β-actin (CAGGS) promoter were generated by breeding. We studied the main embryological parameters of one these GFP transgenic lines. Homozygous GFP-transgenic females have the same ovulation and superovulation rates as wild type (WT) females. Transgenic embryos reached blastocyst stage in vitro and developed in vivo after embryo transfer without decrease in their developmental ability compared to the control group. The genotype of the parents determined the onset of GFP expression in preimplantation embryos. When the GFP gene is derived from the transgenic female parent, fluorescence was detected in oocytes and in embryos of all further stages of development. When the GFP gene is inherited by the transgenic male parent, GFP was only expressed from the blastocyst stage on. GFP-transgenic rats represent a valuable tool to mark embryos for many embryological studies such as transgenesis, gene expression patterns during early development, embryo aggregation for analysis of the distribution of cells in chimeric embryos and nuclear transfer to confirm the origin of the cloned offspring.
Biology of Reproduction | 2006
Elena Popova; Michael Bader; Alexander Krivokharchenko
Abstract Cloning technology would allow targeted genetic alterations in the rat, a species which is yet unaccessible for such studies due to the lack of germline-competent embryonic stem cells. The present study was performed to examine the developmental ability of reconstructed rat embryos after transfer of nuclei from early preimplantation stages. We observed that single blastomeres from two-cell embryos and zygotes reconstructed by pronuclei exchange can develop in vitro until morula/blastocyst stage. When karyoplasts from blastomeres were used for the reconstruction of embryos, highest in vitro cleavage rates were obtained with nuclei in an early phase of the cell cycle transferred into enucleated preactivated oocytes or zygotes. However, further in vitro development of reconstructed embryos produced from blastomere nuclei was arrested at early cleavage stages under all conditions tested in this study. In contrast, immediate transfer to foster mothers of reconstructed embryos with nuclei from two-cell embryos at an early stage of the cell cycle in preactivated enucleated oocytes resulted in live newborn rats, with a general efficiency of 0.4%–2.2%. The genetic origin of the cloned offspring was verified by using donor nuclei from embryos of Black Hooded Wistar rats and transgenic rats carrying an ubiquitously expressed green fluorescent protein transgene. Thus, we report for the first time the production of live cloned rats using nuclei from two-cell embryos.
Methods in molecular medicine | 2005
Elena Popova; Michael Bader; Alexander Krivokharchenko
This chapter describes the generation of transgenic mice and rats by microinjection of DNA constructs into the pronucleus of a zygote. The transgene DNA is randomly integrated as several tandem copies at one site into the genome and is transmitted to the offspring of the founder animal derived from the injected embryo, thereby creating a stable transgenic line. The technology includes the following steps: design and generation of the transgene construct, superovulation of donor animals, isolation of fertilized oocytes, microinjection of the transgene construct into one pronucleus of the zygotes, transfer of injected embryos into the oviduct of a foster mother, and identification of transgenic animals in the offspring.
PLOS ONE | 2010
Ilya Chuykin; Irina Lapidus; Elena Popova; Larisa Vilianovich; Valentina Mosienko; Natalia Alenina; Bert Binas; Guixuan Chai; Michael Bader; Alexander Krivokharchenko
Background Previous attempts to isolate pluripotent cell lines from rat preimplantation embryo in mouse embryonic stem (ES) cell culture conditions (serum and LIF) were unsuccessful, however the resulting cells exhibited the expression of such traditional pluripotency markers as SSEA-1 and alkaline phosphatase. We addressed the question, which kind of cell lineages are produced from rat preimplantation embryo under “classical” mouse ES conditions. Results We characterized two cell lines (C5 and B10) which were obtained from rat blastocysts in medium with serum and LIF. In the B10 cell line we found the expression of genes known to be expressed in trophoblast, Cdx-2, cytokeratin-7, and Hand-1. Also, B10 cells invaded the trophectodermal layer upon injection into rat blastocysts. In contrast to mouse Trophoblast Stem (TS) cells proliferation of B10 cells occurred independently of FGF4. Cells of the C5 line expressed traditional markers of extraembryonic-endoderm (XEN) cells, in particular, GATA-4, but also the pluripotency markers SSEA-1 and Oct-4. C5 cell proliferation exhibited dependence on LIF, which is not known to be required by mouse XEN cells. Conclusions Our results confirm and extend previous findings about differences between blastocyst-derived cell lines of rat and mice. Our data show, that the B10 cell line represents a population of FGF4-independent rat TS-like cells. C5 cells show features that have recently become known as characteristic of rat XEN cells. Early passages of C5 and B10 cells contained both, TS and XEN cells. We speculate, that mechanisms maintaining self-renewal of cell lineages in rat preimplantation embryo and their in vitro counterparts, including ES, TS and XEN cells are different than in respective mouse lineages.
Molecular Reproduction and Development | 2009
Elena Popova; Michael Bader; Alexander Krivokharchenko
In this study we investigated spontaneous oocyte activation and developmental ability of rat embryos of the SD‐OFA substrain. We also tried to improve the somatic cell nuclear transfer (SCNT) technique in the rat by optimizing methods for the production of reconstructed embryos. About 20% of oocytes extruded the second polar body after culture for 3 hr in vitro and 84% of oocytes were at the MII stage. MG132 blocked spontaneous activation but decreased efficiency of parthenogenetic activation. Pronuclear formation was more efficient in strontium‐activated oocytes (66.1–80.9%) compared to roscovitine activation (24.1–54.5%). Survival rate after enucleation was significantly higher (89.4%) after slitting the zona pellucida and then pressing the oocyte with a holding pipette in medium without cytochalasin B (CB) compared to the conventional protocol using aspiration of the chromosomes after CB treatment (67.7%). Exposure of rat ova to UV light for 30 sec did not decrease their in vitro developmental capacity. Intracytoplasmic cumulus cell injection dramatically decreased survival rate of oocytes (42%). In contrast, 75.9% of oocytes could be successfully electrofused. Development to the 2‐cell stage was reduced after SCNT (24.6% compared 94.6% in controls) and none from 244 reconstructed embryos developed in vitro beyond this stage. After overnight in vitro culture, 74.4% of the SCNT embryos survived and 56.1% formed pronuclei. The pregnancy rate of 33 recipients after the transfer of 695 of these cloned embryos was, however, very low (18.2%) and only six implantation sites could be detected (0.9%) without any live fetuses and offspring. Mol. Reprod. Dev. 76: 208–216, 2009.