Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander Krueger is active.

Publication


Featured researches published by Alexander Krueger.


IEEE Transactions on Audio, Speech, and Language Processing | 2010

Model-Based Feature Enhancement for Reverberant Speech Recognition

Alexander Krueger

In this paper, we present a new technique for automatic speech recognition (ASR) in reverberant environments. Our approach is aimed at the enhancement of the logarithmic Mel power spectrum, which is computed at an intermediate stage to obtain the widely used Mel frequency cepstral coefficients (MFCCs). Given the reverberant logarithmic Mel power spectral coefficients (LMPSCs), a minimum mean square error estimate of the clean LMPSCs is computed by carrying out Bayesian inference. We employ switching linear dynamical models as an a priori model for the dynamics of the clean LMPSCs. Further, we derive a stochastic observation model which relates the clean to the reverberant LMPSCs through a simplified model of the room impulse response (RIR). This model requires only two parameters, namely RIR energy and reverberation time, which can be estimated from the captured microphone signal. The performance of the proposed enhancement technique is studied on the AURORA5 database and compared to that of constrained maximum-likelihood linear regression (CMLLR). It is shown by experimental results that our approach significantly outperforms CMLLR and that up to 80% of the errors caused by the reverberation are recovered. In addition to the fact that the approach is compatible with the standard MFCC feature vectors, it leaves the ASR back-end unchanged. It is of moderate computational complexity and suitable for real time applications.


IEEE Transactions on Audio, Speech, and Language Processing | 2011

Speech Enhancement With a GSC-Like Structure Employing Eigenvector-Based Transfer Function Ratios Estimation

Alexander Krueger; Ernst Warsitz

In this paper, we present a novel blocking matrix and fixed beamformer design for a generalized sidelobe canceler for speech enhancement in a reverberant enclosure. They are based on a new method for estimating the acoustical transfer function ratios in the presence of stationary noise. The estimation method relies on solving a generalized eigenvalue problem in each frequency bin. An adaptive eigenvector tracking utilizing the power iteration method is employed and shown to achieve a high convergence speed. Simulation results demonstrate that the proposed beamformer leads to better noise and interference reduction and reduced speech distortions compared to other blocking matrix designs from the literature.


international conference on acoustics, speech, and signal processing | 2008

Speech enhancement with a new generalized eigenvector blocking matrix for application in a generalized sidelobe canceller

Ernst Warsitz; Alexander Krueger

The generalized sidelobe canceller by Griffith and Jim is a robust beamforming method to enhance a desired (speech) signal in the presence of stationary noise. Its performance depends to a high degree on the construction of the blocking matrix which produces noise reference signals for the subsequent adaptive interference canceller. Especially in reverberated environments the beamformer may suffer from signal leakage and reduced noise suppression. In this paper a new blocking matrix is proposed. It is based on a generalized eigenvalue problem whose solution provides an indirect estimation of the transfer functions from the source to the sensors. The quality of the new generalized eigenvector blocking matrix is studied in simulated rooms with different reverberation times and is compared to alternatives proposed in the literature.


Robust Speech Recognition of Uncertain or Missing Data | 2011

A Model-Based Approach to Joint Compensation of Noise and Reverberation for Speech Recognition

Alexander Krueger

Employing automatic speech recognition systems in hands-free communication applications is accompanied by perfomance degradation due to background noise and, in particular, due to reverberation. These two kinds of distortion alter the shape of the feature vector trajectory extracted from the microphone signal and consequently lead to a discrepancy between training and testing conditions for the recognizer. In this chapter we present a feature enhancement approach aiming at the joint compensation of noise and reverberation to improve the performance by restoring the training conditions. For the enhancement we concentrate on the logarithmic mel power spectral coefficients as features, which are computed at an intermediate stage to obtain the widely used mel frequency cepstral coefficients. The proposed technique is based on a Bayesian framework, to attempt to infer the posterior distribution of the clean features given the observation of all past corrupted features. It exploits information from a priori models describing the dynamics of clean speech and noise-only feature vector trajectories as well as from an observation model relating the reverberant noisy to the clean features. The observation model relies on a simplified stochastic model of the room impulse response (RIR) between the speaker and the microphone, having only two parameters, namely RIR energy and reverberation time, which can be estimated from the captured microphone signal. The performance of the proposed enhancement technique is finally experimentally studied by means of recognition accuracy obtained for a connected digits recognition task under different noise and reverberation conditions using the Aurora 5 database.


IEEE Transactions on Audio, Speech, and Language Processing | 2013

Bayesian Feature Enhancement for Reverberation and Noise Robust Speech Recognition

Volker Leutnant; Alexander Krueger

In this contribution we extend a previously proposed Bayesian approach for the enhancement of reverberant logarithmic mel power spectral coefficients for robust automatic speech recognition to the additional compensation of background noise. A recently proposed observation model is employed whose time-variant observation error statistics are obtained as a side product of the inference of the a posteriori probability density function of the clean speech feature vectors. Further a reduction of the computational effort and the memory requirements are achieved by using a recursive formulation of the observation model. The performance of the proposed algorithms is first experimentally studied on a connected digits recognition task with artificially created noisy reverberant data. It is shown that the use of the time-variant observation error model leads to a significant error rate reduction at low signal-to-noise ratios compared to a time-invariant model. Further experiments were conducted on a 5000 word task recorded in a reverberant and noisy environment. A significant word error rate reduction was obtained demonstrating the effectiveness of the approach on real-world data.


IEEE Transactions on Audio, Speech, and Language Processing | 2014

A New Observation Model in the Logarithmic Mel Power Spectral Domain for the Automatic Recognition of Noisy Reverberant Speech

Volker Leutnant; Alexander Krueger

In this contribution we present a theoretical and experimental investigation into the effects of reverberation and noise on features in the logarithmic mel power spectral domain, an intermediate stage in the computation of the mel frequency cepstral coefficients, prevalent in automatic speech recognition (ASR). Gaining insight into the complex interaction between clean speech, noise, and noisy reverberant speech features is essential for any ASR system to be robust against noise and reverberation present in distant microphone input signals. The findings are gathered in a probabilistic formulation of an observation model which may be used in model-based feature compensation schemes. The proposed observation model extends previous models in three major directions: First, the contribution of additive background noise to the observation error is explicitly taken into account. Second, an energy compensation constant is introduced which ensures an unbiased estimate of the reverberant speech features, and, third, a recursive variant of the observation model is developed resulting in reduced computational complexity when used in model-based feature compensation. The experimental section is used to evaluate the accuracy of the model and to describe how its parameters can be determined from test data.


international conference on acoustics, speech, and signal processing | 2012

Improved noise power spectral density tracking by a MAP-based postprocessor

Aleksej Chinaev; Alexander Krueger; Dang Hai Tran Vu

In this paper we present a novel noise power spectral density tracking algorithm and its use in single-channel speech enhancement. It has the unique feature that it is able to track the noise statistics even if speech is dominant in a given time-frequency bin. As a consequence it can follow non-stationary noise superposed by speech, even in the critical case of rising noise power. The algorithm requires an initial estimate of the power spectrum of speech and is thus meant to be used as a postprocessor to a first speech enhancement stage. An experimental comparison with a state-of-the-art noise tracking algorithm demonstrates lower estimation errors under low SNR conditions and smaller fluctuations of the estimated values, resulting in improved speech quality as measured by PESQ scores.


international conference on acoustics, speech, and signal processing | 2011

MAP-based estimation of the parameters of non-stationary Gaussian processes from noisy observations

Alexander Krueger

The paper proposes a modification of the standard maximum a posteriori (MAP) method for the estimation of the parameters of a Gaussian process for cases where the process is superposed by additive Gaussian observation errors of known variance. Simulations on artificially generated data demonstrate the superiority of the proposed method. While reducing to the ordinary MAP approach in the absence of observation noise, the improvement becomes the more pronounced the larger the variance of the observation noise. The method is further extended to track the parameters in case of non-stationary Gaussian processes.


international conference on signal processing | 2012

A statistical observation model for noisy reverberant speech features and its application to robust ASR

Volker Leutnant; Alexander Krueger

In this work, an observation model for the joint compensation of noise and reverberation in the logarithmic mel power spectral density domain is considered. It relates the features of the noisy reverberant speech to those of the non-reverberant speech and the noise. In contrast to enhancement of features only corrupted by reverberation (reverberant features), enhancement of noisy reverberant features requires a more sophisticated model for the error introduced by the proposed observation model. In a first consideration, it will be shown that this error is highly dependent on the instantaneous ratio of the power of reverberant speech to the power of the noise and, moreover, sensitive to the phase between reverberant speech and noise in the short-time discrete Fourier domain. Afterwards, a statistically motivated approach will be presented allowing for the model of the observation error to be inferred from the error model previously used for the reverberation only case. Finally, the developed observation error model will be utilized in a Bayesian feature enhancement scheme, leading to improvements in word accuracy on the AURORA5 database.


conference of the international speech communication association | 2009

Model based feature enhancement for automatic speech recognition in reverberant environments

Alexander Krueger

Collaboration


Dive into the Alexander Krueger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bhiksha Raj

Carnegie Mellon University

View shared research outputs
Researchain Logo
Decentralizing Knowledge