Alexander Kurganov
Tulane University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander Kurganov.
SIAM Journal on Scientific Computing | 2001
Alexander Kurganov; Sebastian Noelle; Guergana Petrova
We introduce new Godunov-type semidiscrete central schemes for hyperbolic systems of conservation laws and Hamilton--Jacobi equations. The schemes are based on the use of more precise information about the local speeds of propagation and can be viewed as a generalization of the schemes from [A. Kurganov and E. Tadmor, J. Comput. Phys., 160 (2000), pp. 241--282; A. Kurganov and D. Levy, SIAM J. Sci. Comput., 22 (2000), pp. 1461--1488; A. Kurganov and G. Petrova, A third-order semidiscrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems, Numer. Math., to appear] and [A. Kurganov and E. Tadmor, J. Comput. Phys., 160 (2000), pp. 720--742]. The main advantages of the proposed central schemes are the high resolution, due to the smaller amount of the numerical dissipation, and the simplicity. There are no Riemann solvers and characteristic decomposition involved, and this makes them a universal tool for a wide variety of applications. At the same time, the developed schemes have an upwind nature, since they respect the directions of wave propagation by measuring the one-sided local speeds. This is why we call them central-upwind schemes. The constructed schemes are applied to various problems, such as the Euler equations of gas dynamics, the Hamilton--Jacobi equations with convex and nonconvex Hamiltonians, and the incompressible Euler and Navier--Stokes equations. The incompressibility condition in the latter equations allows us to treat them both in their conservative and transport form. We apply to these problems the central-upwind schemes, developed separately for each of them, and compute the corresponding numerical solutions.
Numerische Mathematik | 2001
Alexander Kurganov; Guergana Petrova
Summary. We construct a new third-order semi-discrete genuinely multidimensional central scheme for systems of conservation laws and related convection-diffusion equations. This construction is based on a multidimensional extension of the idea, introduced in [17] – the use of more precise information about the local speeds of propagation, and integration over nonuniform control volumes, which contain Riemann fans.As in the one-dimensional case, the small numerical dissipation, which is independent of
Numerische Mathematik | 2008
Alina Chertock; Alexander Kurganov
{\cal O}(\frac{1}{\Delta t})
SIAM Journal on Scientific Computing | 2007
Alexander Kurganov; Guergana Petrova; Bojan Popov
, allows us to pass to a limit as
SIAM Journal on Scientific Computing | 2009
Alexander Kurganov; Guergana Petrova
\Delta t \downarrow 0
SIAM Journal on Numerical Analysis | 2008
Yekaterina Epshteyn; Alexander Kurganov
. This results in a particularly simple genuinely multidimensional semi-discrete scheme. The high resolution of the proposed scheme is ensured by the new two-dimensional piecewise quadratic non-oscillatory reconstruction. First, we introduce a less dissipative modification of the reconstruction, proposed in [29]. Then, we generalize it for the computation of the two-dimensional numerical fluxes.Our scheme enjoys the main advantage of the Godunov-type central schemes –simplicity, namely it does not employ Riemann solvers and characteristic decomposition. This makes it a universal method, which can be easily implemented to a wide variety of problems. In this paper, the developed scheme is applied to the Euler equations of gas dynamics, a convection-diffusion equation with strongly degenerate diffusion, the incompressible Euler and Navier-Stokes equations. These numerical experiments demonstrate the desired accuracy and high resolution of our scheme.
Nonlinearity | 2003
Alina Chertock; Alexander Kurganov; Philip Rosenau
The paper is concerned with development of a new finite-volume method for a class of chemotaxis models and for a closely related haptotaxis model. In its simplest form, the chemotaxis model is described by a system of nonlinear PDEs: a convection-diffusion equation for the cell density coupled with a reaction-diffusion equation for the chemoattractant concentration. The first step in the derivation of the new method is made by adding an equation for the chemoattractant concentration gradient to the original system. We then show that the convective part of the resulting system is typically of a mixed hyperbolic-elliptic type and therefore straightforward numerical methods for the studied system may be unstable. The proposed method is based on the application of the second-order central-upwind scheme, originally developed for hyperbolic systems of conservation laws in Kurganov et al. (SIAM J Sci Comput 21:707–740, 2001), to the extended system of PDEs. We show that the proposed second-order scheme is positivity preserving, which is a very important stability property of the method. The scheme is applied to a number of two-dimensional problems including the most commonly used Keller–Segel chemotaxis model and its modern extensions as well as to a haptotaxis system modeling tumor invasion into surrounding healthy tissue. Our numerical results demonstrate high accuracy, stability, and robustness of the proposed scheme.
SIAM Journal on Numerical Analysis | 2007
Alina Chertock; Alexander Kurganov; Yurii Rykov
We discover that the choice of a piecewise polynomial reconstruction is crucial in computing solutions of nonconvex hyperbolic (systems of) conservation laws. Using semidiscrete central-upwind schemes, we illustrate that the obtained numerical approximations may fail to converge to the unique entropy solution or the convergence may be so slow that achieving a proper resolution would require the use of (almost) impractically fine meshes. For example, in the scalar case, all computed solutions seem to converge to solutions that are entropy solutions for some entropy pairs. However, in most applications, one is interested in capturing the unique (Kruzhkov) solution that satisfies the entropy condition for all convex entropies. We present a number of numerical examples that demonstrate the convergence of the solutions, computed with the dissipative second-order minmod reconstruction, to the unique entropy solution. At the same time, more compressive and/or higher-order reconstructions may fail to resolve composite waves, typically present in solutions of nonconvex conservation laws, and thus may fail to recover the Kruzhkov solution. In this paper, we propose a simple and computationally inexpensive adaptive strategy that allows us to simultaneously capture the unique entropy solution and to achieve a high resolution of the computed solution. We use the dissipative minmod reconstruction near the points where convexity changes and utilize a fifth-order weighted essentially nonoscillatory (WENO5) reconstruction in the rest of the computational domain. Our numerical examples (for one- and two-dimensional scalar and systems of conservation laws) demonstrate the robustness, reliability, and nonoscillatory nature of the proposed adaptive method.
Journal of Computational Physics | 2012
Alexander Kurganov; Yu Liu
We derive a second-order semidiscrete central-upwind scheme for one- and two-dimensional systems of two-layer shallow water equations. We prove that the presented scheme is well-balanced in the sense that stationary steady-state solutions are exactly preserved by the scheme and positivity preserving; that is, the depth of each fluid layer is guaranteed to be nonnegative. We also propose a new technique for the treatment of the nonconservative products describing the momentum exchange between the layers. The performance of the proposed method is illustrated on a number of numerical examples, in which we successfully capture (quasi) steady-state solutions and propagating interfaces.
Siam Journal on Mathematical Analysis | 1997
Alexander Kurganov; Eitan Tadmor
We develop a family of new interior penalty discontinuous Galerkin methods for the Keller-Segel chemotaxis model. This model is described by a system of two nonlinear PDEs: a convection-diffusion equation for the cell density coupled with a reaction-diffusion equation for the chemoattractant concentration. It has been recently shown that the convective part of this system is of a mixed hyperbolic-elliptic-type, which may cause severe instabilities when the studied system is solved by straightforward numerical methods. Therefore, the first step in the derivation of our new methods is made by introducing the new variable for the gradient of the chemoattractant concentration and by reformulating the original Keller-Segel model in the form of a convection-diffusion-reaction system with a hyperbolic convective part. We then design interior penalty discontinuous Galerkin methods for the rewritten Keller-Segel system. Our methods employ the central-upwind numerical fluxes, originally developed in the context of finite-volume methods for hyperbolic systems of conservation laws. In this paper, we consider Cartesian grids and prove error estimates for the proposed high-order discontinuous Galerkin methods. Our proof is valid for pre-blow-up times since we assume boundedness of the exact solution. We also show that the blow-up time of the exact solution is bounded from above by the blow-up time of our numerical solution. In the numerical tests presented below, we demonstrate that the obtained numerical solutions have no negative values and are oscillation-free, even though no slope-limiting technique has been implemented.