Alexander Lemak
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander Lemak.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Yang Shen; Oliver F. Lange; Frank Delaglio; Paolo Rossi; James M. Aramini; Gaohua Liu; Alexander Eletsky; Yibing Wu; Kiran Kumar Singarapu; Alexander Lemak; Alexandr Ignatchenko; C.H. Arrowsmith; Thomas Szyperski; Gaetano T. Montelione; David Baker; Ad Bax
Protein NMR chemical shifts are highly sensitive to local structure. A robust protocol is described that exploits this relation for de novo protein structure generation, using as input experimental parameters the 13Cα, 13Cβ, 13C′, 15N, 1Hα and 1HN NMR chemical shifts. These shifts are generally available at the early stage of the traditional NMR structure determination process, before the collection and analysis of structural restraints. The chemical shift based structure determination protocol uses an empirically optimized procedure to select protein fragments from the Protein Data Bank, in conjunction with the standard ROSETTA Monte Carlo assembly and relaxation methods. Evaluation of 16 proteins, varying in size from 56 to 129 residues, yielded full-atom models that have 0.7–1.8 Å root mean square deviations for the backbone atoms relative to the experimentally determined x-ray or NMR structures. The strategy also has been successfully applied in a blind manner to nine protein targets with molecular masses up to 15.4 kDa, whose conventional NMR structure determination was conducted in parallel by the Northeast Structural Genomics Consortium. This protocol potentially provides a new direction for high-throughput NMR structure determination.
Journal of Biological Chemistry | 2011
Lilia Kaustov; Hui Ouyang; Maria J Amaya; Alexander Lemak; Nataliya Nady; Shili Duan; Gregory A. Wasney; Zhihong Li; Masoud Vedadi; Matthieu Schapira; Jinrong Min; C.H. Arrowsmith
The eight mammalian Cbx proteins are chromodomain-containing proteins involved in regulation of heterochromatin, gene expression, and developmental programs. They are evolutionarily related to the Drosophila HP1 (dHP1) and Pc (dPc) proteins that are key components of chromatin-associated complexes capable of recognizing repressive marks such as trimethylated Lys-9 and Lys-27, respectively, on histone H3. However, the binding specificity and function of the human homologs, Cbx1–8, remain unclear. To this end we employed structural, biophysical, and mutagenic approaches to characterize the molecular determinants of sequence contextual methyllysine binding to human Cbx1–8 proteins. Although all three human HP1 homologs (Cbx1, -3, -5) replicate the structural and binding features of their dHP counterparts, the five Pc homologs (Cbx2, -4, -6, -7, -8) bind with lower affinity to H3K9me3 or H3K27me3 peptides and are unable to distinguish between these two marks. Additionally, peptide permutation arrays revealed a greater sequence tolerance within the Pc family and suggest alternative nonhistone sequences as potential binding targets for this class of chromodomains. Our structures explain the divergence of peptide binding selectivity in the Pc subfamily and highlight previously unrecognized features of the chromodomain that influence binding and specificity.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Rhiju Das; Ingemar André; Yang Shen; Yibing Wu; Alexander Lemak; Sonal Bansal; C.H. Arrowsmith; Thomas Szyperski; David Baker
Interleaved dimers and higher order symmetric oligomers are ubiquitous in biology but present a challenge to de novo structure prediction methodology: The structure adopted by a monomer can be stabilized largely by interactions with other monomers and hence not the lowest energy state of a single chain. Building on the Rosetta framework, we present a general method to simultaneously model the folding and docking of multiple-chain interleaved homo-oligomers. For more than a third of the cases in a benchmark set of interleaved homo-oligomers, the method generates near-native models of large α-helical bundles, interlocking β sandwiches, and interleaved α/β motifs with an accuracy high enough for molecular replacement based phasing. With the incorporation of NMR chemical shift information, accurate models can be obtained consistently for symmetric complexes with as many as 192 total amino acids; a blind prediction was within 1 Å rmsd of the traditionally determined NMR structure, and fit independently collected RDC data equally well. Together, these results show that the Rosetta “fold-and-dock” protocol can produce models of homo-oligomeric complexes with near-atomic-level accuracy and should be useful for crystallographic phasing and the rapid determination of the structures of multimers with limited NMR information.
Journal of Biological Chemistry | 2011
Nataliya Nady; Alexander Lemak; John R. Walker; George V. Avvakumov; Michael S. Kareta; Mayada Achour; Sheng Xue; Shili Duan; Abdellah Allali-Hassani; Xiaobing Zuo; Yun Xing Wang; Christian Bronner; Frédéric Chédin; C.H. Arrowsmith; Sirano Dhe-Paganon
Histone modifications and DNA methylation represent two layers of heritable epigenetic information that regulate eukaryotic chromatin structure and gene activity. UHRF1 is a unique factor that bridges these two layers; it is required for maintenance DNA methylation at hemimethylated CpG sites, which are specifically recognized through its SRA domain and also interacts with histone H3 trimethylated on lysine 9 (H3K9me3) in an unspecified manner. Here we show that UHRF1 contains a tandem Tudor domain (TTD) that recognizes H3 tail peptides with the heterochromatin-associated modification state of trimethylated lysine 9 and unmodified lysine 4 (H3K4me0/K9me3). Solution NMR and crystallographic data reveal the TTD simultaneously recognizes H3K9me3 through a conserved aromatic cage in the first Tudor subdomain and unmodified H3K4 within a groove between the tandem subdomains. The subdomains undergo a conformational adjustment upon peptide binding, distinct from previously reported mechanisms for dual histone mark recognition. Mutant UHRF1 protein deficient for H3K4me0/K9me3 binding shows altered localization to heterochromatic chromocenters and fails to reduce expression of a target gene, p16INK4A, when overexpressed. Our results demonstrate a novel recognition mechanism for the combinatorial readout of histone modification states associated with gene silencing and add to the growing evidence for coordination of, and cross-talk between, the modification states of H3K4 and H3K9 in regulation of gene expression.
Nature Structural & Molecular Biology | 2008
Yi Sheng; Rob C. Laister; Alexander Lemak; Bin Wu; Elizabeth Tai; Shili Duan; Jonathan Lukin; Maria Sunnerhagen; Sampath Srisailam; Murthy Karra; Sam Benchimol; C.H. Arrowsmith
Pirh2 (p53-induced RING-H2 domain protein; also known as Rchy1) is an E3 ubiquitin ligase involved in a negative-feedback loop with p53. Using NMR spectroscopy, we show that Pirh2 is a unique cysteine-rich protein comprising three modular domains. The protein binds nine zinc ions using a variety of zinc coordination schemes, including a RING domain and a left-handed β-spiral in which three zinc ions align three consecutive small β-sheets in an interleaved fashion. We show that Pirh2-p53 interaction is dependent on the C-terminal zinc binding module of Pirh2, which binds to the tetramerization domain of p53. As a result, Pirh2 preferentially ubiquitylates the tetrameric form of p53 in vitro and in vivo, suggesting that Pirh2 regulates protein turnover of the transcriptionally active form of p53.
PLOS Pathogens | 2010
Bin Wu; Tatiana Skarina; Adelinda Yee; Marie-Claude Jobin; Rosa DiLeo; Anthony Semesi; Christophe Fares; Alexander Lemak; Brian K. Coombes; C.H. Arrowsmith; Alexander Singer; Alexei Savchenko
NleG homologues constitute the largest family of type 3 effectors delivered by pathogenic E. coli, with fourteen members in the enterohaemorrhagic (EHEC) O157:H7 strain alone. Identified recently as part of the non-LEE-encoded (Nle) effector set, this family remained uncharacterised and shared no sequence homology to other proteins including those of known function. The C-terminal domain of NleG2-3 (residues 90 to 191) is the most conserved region in NleG proteins and was solved by NMR. Structural analysis of this structure revealed the presence of a RING finger/U-box motif. Functional assays demonstrated that NleG2-3 as well as NleG5-1, NleG6-2 and NleG9′ family members exhibited a strong autoubiquitination activity in vitro; a characteristic usually expressed by eukaryotic ubiquitin E3 ligases. When screened for activity against a panel of 30 human E2 enzymes, the NleG2-3 and NleG5-1 homologues showed an identical profile with only UBE2E2, UBE2E3 and UBE2D2 enzymes supporting NleG activity. Fluorescence polarization analysis yielded a binding affinity constant of 56±2 µM for the UBE2D2/NleG5-1 interaction, a value comparable with previous studies on E2/E3 affinities. The UBE2D2 interaction interface on NleG2-3 defined by NMR chemical shift perturbation and mutagenesis was shown to be generally similar to that characterised for human RING finger ubiquitin ligases. The alanine substitutions of UBE2D2 residues Arg5 and Lys63, critical for activation of eukaryotic E3 ligases, also significantly decreased both NleG binding and autoubiquitination activity. These results demonstrate that bacteria-encoded NleG effectors are E3 ubiquitin ligases analogous to RING finger and U-box enzymes in eukaryotes.
Molecular Cell | 2014
Kathy Ann Gelato; Maria Tauber; Michelle S. Ong; Stefan Winter; Kyoko Hiragami-Hamada; Julia Sindlinger; Alexander Lemak; Yvette Bultsma; Scott Houliston; Dirk Schwarzer; Nullin Divecha; C.H. Arrowsmith; Wolfgang Fischle
UHRF1 is a multidomain protein crucially linking histone H3 modification states and DNA methylation. While the interaction properties of its specific domains are well characterized, little is known about the regulation of these functionalities. We show that UHRF1 exists in distinct active states, binding either unmodified H3 or the H3 lysine 9 trimethylation (H3K9me3) modification. A polybasic region (PBR) in the C terminus blocks interaction of a tandem tudor domain (TTD) with H3K9me3 by occupying an essential peptide-binding groove. In this state the plant homeodomain (PHD) mediates interaction with the extreme N terminus of the unmodified H3 tail. Binding of the phosphatidylinositol phosphate PI5P to the PBR of UHRF1 results in a conformational rearrangement of the domains, allowing the TTD to bind H3K9me3. Our results define an allosteric mechanism controlling heterochromatin association of an essential regulatory protein of epigenetic states and identify a functional role for enigmatic nuclear phosphatidylinositol phosphates.
Science | 2017
Gabriel J. Rocklin; Tamuka M. Chidyausiku; Inna Goreshnik; Alex Ford; Scott Houliston; Alexander Lemak; Lauren Carter; Rashmi Ravichandran; Vikram Khipple Mulligan; Aaron Chevalier; C.H. Arrowsmith; David Baker
Exploring structure space to understand stability Understanding the determinants of protein stability is challenging because native proteins have conformations that are optimized for function. Proteins designed without functional bias could give insight into how structure determines stability, but this requires a large sample size. Rocklin et al. report a high-throughput protein design and characterization method that allows them to measure thousands of miniproteins (see the Perspective by Woolfson et al.). Iterative rounds of design and characterization increased the design success rate from 6 to 47%, which provides insight into the balance of forces that determine protein stability. Science, this issue p. 168; see also p. 133 Thousands of computationally designed proteins quantify the global determinants of miniprotein stability. Proteins fold into unique native structures stabilized by thousands of weak interactions that collectively overcome the entropic cost of folding. Although these forces are “encoded” in the thousands of known protein structures, “decoding” them is challenging because of the complexity of natural proteins that have evolved for function, not stability. We combined computational protein design, next-generation gene synthesis, and a high-throughput protease susceptibility assay to measure folding and stability for more than 15,000 de novo designed miniproteins, 1000 natural proteins, 10,000 point mutants, and 30,000 negative control sequences. This analysis identified more than 2500 stable designed proteins in four basic folds—a number sufficient to enable us to systematically examine how sequence determines folding and stability in uncharted protein space. Iteration between design and experiment increased the design success rate from 6% to 47%, produced stable proteins unlike those found in nature for topologies where design was initially unsuccessful, and revealed subtle contributions to stability as designs became increasingly optimized. Our approach achieves the long-standing goal of a tight feedback cycle between computation and experiment and has the potential to transform computational protein design into a data-driven science.
Journal of Biological Chemistry | 2007
Lilia Kaustov; Jonathan Lukin; Alexander Lemak; Shili Duan; Melissa Ho; Ryan Doherty; Linda Z. Penn; C.H. Arrowsmith
Cul7 is a member of the Cullin Ring Ligase (CRL) family and is required for normal mouse development and cellular proliferation. Recently, a region of Cul7 that is highly conserved in the p53-associated, Parkin-like cytoplasmic protein PARC, was shown to bind p53 directly. Here we identify the CPH domains (conserved domain within Cul7, PARC, and HERC2 proteins) of both Cul7 and PARC as p53 interaction domains using size exclusion chromatography and NMR spectroscopy. We present the first structure of the evolutionarily conserved CPH domain and provide novel insight into the Cul7-p53 interaction. The NMR structure of the Cul7-CPH domain reveals a fold similar to peptide interaction modules such as the SH3, Tudor, and KOW domains. The p53 interaction surface of both Cul7 and PARC CPH domains was mapped to a conserved surface distinct from the analogous peptide-binding regions of SH3, KOW, and Tudor domains, suggesting a novel mode of interaction. The CPH domain interaction surface of p53 resides in the tetramerization domain and is formed by residues contributed by at least two subunits.
Biochemical and Biophysical Research Communications | 2014
Sara Helander; Meri Montecchio; Alexander Lemak; Christophe Farès; Jonas Almlöf; Yanjun Li; Adelinda Yee; C.H. Arrowsmith; Sirano Dhe-Paganon; Maria Sunnerhagen
In this paper, we describe the structure of a N-terminal domain motif in nuclear-localized FKBP251-73, a member of the FKBP family, together with the structure of a sequence-related subdomain of the E3 ubiquitin ligase HectD1 that we show belongs to the same fold. This motif adopts a compact 5-helix bundle which we name the Basic Tilted Helix Bundle (BTHB) domain. A positively charged surface patch, structurally centered around the tilted helix H4, is present in both FKBP25 and HectD1 and is conserved in both proteins, suggesting a conserved functional role. We provide detailed comparative analysis of the structures of the two proteins and their sequence similarities, and analysis of the interaction of the proposed FKBP25 binding protein YY1. We suggest that the basic motif in BTHB is involved in the observed DNA binding of FKBP25, and that the function of this domain can be affected by regulatory YY1 binding and/or interactions with adjacent domains.