Alexander Leshansky
Technion – Israel Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander Leshansky.
Nature | 2005
David J. Pine; Jerry P. Gollub; John F. Brady; Alexander Leshansky
Systems governed by time reversible equations of motion often give rise to irreversible behaviour. The transition from reversible to irreversible behaviour is fundamental to statistical physics, but has not been observed experimentally in many-body systems. The flow of a newtonian fluid at low Reynolds number can be reversible: for example, if the fluid between concentric cylinders is sheared by boundary motion that is subsequently reversed, then all fluid elements return to their starting positions. Similarly, slowly sheared suspensions of solid particles, which occur widely in nature and science, are governed by time reversible equations of motion. Here we report an experiment showing precisely how time reversibility fails for slowly sheared suspensions. We find that there is a concentration dependent threshold for the deformation or strain beyond which particles do not return to their starting configurations after one or more cycles. Instead, their displacements follow the statistics of an anisotropic random walk. By comparing the experimental results with numerical simulations, we demonstrate that the threshold strain is associated with a pronounced growth in the Lyapunov exponent (a measure of the strength of chaotic particle interactions). The comparison illuminates the connections between chaos, reversibility and predictability.
Nature Communications | 2014
Tian Qiu; Tung-Chun Lee; Andrew G. Mark; Konstantin I. Morozov; Raphael Münster; Otto Mierka; Stefan Turek; Alexander Leshansky; Peer Fischer
Biological microorganisms swim with flagella and cilia that execute nonreciprocal motions for low Reynolds number (Re) propulsion in viscous fluids. This symmetry requirement is a consequence of Purcell’s scallop theorem, which complicates the actuation scheme needed by microswimmers. However, most biomedically important fluids are non-Newtonian where the scallop theorem no longer holds. It should therefore be possible to realize a microswimmer that moves with reciprocal periodic body-shape changes in non-Newtonian fluids. Here we report a symmetric ‘micro-scallop’, a single-hinge microswimmer that can propel in shear thickening and shear thinning (non-Newtonian) fluids by reciprocal motion at low Re. Excellent agreement between our measurements and both numerical and analytical theoretical predictions indicates that the net propulsion is caused by modulation of the fluid viscosity upon varying the shear rate. This reciprocal swimming mechanism opens new possibilities in designing biomedical microdevices that can propel by a simple actuation scheme in non-Newtonian biological fluids.
ACS Nano | 2014
Debora Schamel; Andrew G. Mark; John G. Gibbs; Cornelia Miksch; Konstantin I. Morozov; Alexander Leshansky; Peer Fischer
Tissue and biological fluids are complex viscoelastic media with a nanoporous macromolecular structure. Here, we demonstrate that helical nanopropellers can be controllably steered through such a biological gel. The screw-propellers have a filament diameter of about 70 nm and are smaller than previously reported nanopropellers as well as any swimming microorganism. We show that the nanoscrews will move through high-viscosity solutions with comparable velocities to that of larger micropropellers, even though they are so small that Brownian forces suppress their actuation in pure water. When actuated in viscoelastic hyaluronan gels, the nanopropellers appear to have a significant advantage, as they are of the same size range as the gels mesh size. Whereas larger helices will show very low or negligible propulsion in hyaluronan solutions, the nanoscrews actually display significantly enhanced propulsion velocities that exceed the highest measured speeds in Newtonian fluids. The nanopropellers are not only promising for applications in the extracellular environment but small enough to be taken up by cells.
Physics of Fluids | 2009
Alexander Leshansky; L. M. Pismen
We propose a mechanism of droplet breakup in a symmetric microfluidic T junction driven by pressure decrement in a narrow gap between the droplet and the channel wall. This mechanism works in a two-dimensional setting where the capillary (Rayleigh–Plateau) instability of a cylindrical liquid thread, suggested earlier [D. Link, S. Anna, D. Weitz, and H. Stone, Phys. Rev. Lett. 92, 054503 (2004)] as the cause of breakup, is not operative, but it is likely to be responsible for the breakup also in three dimensions. We derive a dependence of the critical droplet extension on the capillary number Ca by combining a simple geometric construction for the interface shape with lubrication analysis in a narrow gap where the surface tension competes with the viscous drag. The theory, formally valid for Ca1/5⪡1, shows a very good agreement with numerical results when it is extrapolated to moderate values of Ca.
Physical Review E | 2009
Alexander Leshansky
It has been known for some time that some microorganisms can swim faster in high-viscosity gel-forming polymer solutions. These gel-like media come to mimic highly viscous heterogeneous environment that these microorganisms encounter in-vivo. The qualitative explanation of this phenomena first offered by Berg and Turner [Nature (London) 278, 349 (1979)], suggests that propulsion enhancement is a result of flagellum pushing on quasi-rigid loose polymer network formed in some polymer solutions. Inspired by these observations, inertia-less propulsion in a heterogeneous viscous medium composed of sparse array of stationary obstacles embedded into a incompressible Newtonian liquid is considered. It is demonstrated that for prescribed propulsion gaits, including propagating surface distortions and rotating helical filament, the propulsion speed is enhanced when compared to swimming in purely viscous solvent. It is also shown that the locomotion in heterogenous viscous media is characterized by improved hydrodynamic efficiency. The results of the rigorous numerical simulation of the rotating helical filament propelled through a random sparse array of stationary obstructions are in close agreement with predictions of the proposed resistive force theory based on effective media approximation.
Nanoscale | 2014
Konstantin I. Morozov; Alexander Leshansky
Propulsion of chiral magnetic nanomotors powered by a rotating magnetic field is in the focus of the modern biomedical applications. This technology relies on strong interactions of dynamic and magnetic degrees of freedom of the system. Here we study in detail various experimentally observed regimes of the helical nanomotor orientation and propulsion depending on the actuation frequency, and establish the relation of these two properties to the remanent magnetization and geometry of the helical nanomotors. The theoretical predictions for the transition between the regimes and nanomotor orientation and propulsion speed are in excellent agreement with available experimental data. The proposed theory offers a few simple guidelines towards the optimal design of the magnetic nanomotors.
Physics of Fluids | 2011
Shahriar Afkhami; Alexander Leshansky; Yuriko Renardy
We present a combined numerical and asymptotic approach for modeling droplets in microchannels. The magnitude of viscous forces relative to the surface tension force is characterized by a capillary number, Ca, which is assumed to be small. The numerical results successfully capture existing asymptotic solutions for the motion of drops in unconfined and confined flows; examples include the analytic Stokes flow solution for a two-dimensional inviscid bubble placed in an unbounded parabolic flow field and asymptotic formulas for slender bubbles and drops in confined flows. An extensive investigation of the accuracy of the computations is presented to probe the efficacy of the methodology and algorithms. Thereafter, numerical simulations are presented for droplet breakup in a symmetric microfluidic T-junction. The results are shown to support a proposed mechanism for breakup, driven by a pressure drop in a narrow gap between the droplet and the outer channel wall, which was formally derived in the limit Ca1/5...
New Journal of Physics | 2007
Alexander Leshansky; Oded Kenneth; Omri Gat; J. E. Avron
We investigate the self-locomotion of an elongated microswimmer by virtue of unidirectional tangential surface treadmilling. We show that the propulsion could be almost frictionless, as the microswimmer is propelled forward with the speed of the backward surface motion, i.e. it moves through an almost quiescent fluid. We investigate this swimming technique using the special spheroidal coordinates and also find an explicit closed-form optimal solution for a two-dimensional treadmiller via complex-variable techniques. Slender-object surface treadmilling is a particularly efficient mode of locomotion because the viscous drag is determined by the smallest length scale of the object rather than by the largest scale, as is the usual case for low Reynolds number flow.
ACS Nano | 2012
Ossama Assad; Alexander Leshansky; Bin Wang; Thomas Stelzner; Silke Christiansen; Hossam Haick
Technological implementation of nanowires (NWs) requires these components to be organized with controlled orientation and density on various substrates. Here, we report on a simple and efficient route for the deposition of highly ordered and highly aligned NW arrays on a wide range of receiver substrates, including silicon, glass, metals, and flexible plastics with controlled density. The deposition approach is based on spray-coating of a NW suspension under controlled conditions of the nozzle flow rate, droplet size of the sprayed NWs suspension, spray angle, and the temperature of the receiver substrate. The dynamics of droplet generation is understood by a combined action of shear forces and capillary forces. Provided that the size of the generated droplet is comparable to the length of the single NW, the shear-driven elongation of the droplets results presumably in the alignment of the confined NW in the spraying direction. Flattening the droplets upon their impact with the substrate yields fast immobilization of the spray-aligned NWs on the surface due to van der Waals attraction. The availability of the spray-coating technique in the current microelectronics technology would ensure immediate implementation in production lines, with minimal changes in the fabrication design and/or auxiliary tools used for this purpose.
Nano Letters | 2015
Debora Walker; M. Kübler; Konstantin I. Morozov; Peer Fischer; Alexander Leshansky
Locomotion in fluids at the nanoscale is dominated by viscous drag. One efficient propulsion scheme is to use a weak rotating magnetic field that drives a chiral object. From bacterial flagella to artificial drills, the corkscrew is a universally useful chiral shape for propulsion in viscous environments. Externally powered magnetic micro- and nanomotors have been recently developed that allow for precise fuel-free propulsion in complex media. Here, we combine analytical and numerical theory with experiments on nanostructured screw-propellers to show that the optimal length is surprisingly short-only about one helical turn, which is shorter than most of the structures in use to date. The results have important implications for the design of artificial actuated nano- and micropropellers and can dramatically reduce fabrication times, while ensuring optimal performance.