Alexander Lomtatidze
Masaryk University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander Lomtatidze.
Nonlinear Analysis-theory Methods & Applications | 2003
Alexander Lomtatidze; Luisa Malaguti
V clanku jsou nalezeny postacujici podminky pro řesitelnost dvoubodove okrajove ulohy pro singularni obycejne diferencialni rovnice druheho řadu.
Nonlinear Analysis-theory Methods & Applications | 2002
Robert Hakl; Alexander Lomtatidze; Bedřich Půža
New optimal sufficient conditions are established for the existence of a unique periodic solution of first order scalar functional differential equations
Georgian Mathematical Journal | 2000
Alexander Lomtatidze; N. Kandelaki; D. Ugulava
Abstract New oscillation and nonoscillation criteria are established for the equation u″ + p(t)|u| α |u′|1–α sgn u = 0, where α ∈]0, 1] and the function p :]0, +∞[→] – ∞, +∞[ is locally integrable.
Nonlinear Analysis-theory Methods & Applications | 2002
Robert Hakl; Alexander Lomtatidze; Jiří Šremr
Nonimprovable,in a certain sense, sufficient conditions for the unique solvability of antiperiodic type BVP for first order scalar functional differential equations are established.
Differential Equations | 2003
Alexander Lomtatidze; Robert Hakl; Bedřich Půža
V clanku jsou nalezeny efektivni podminky zarucujici řesitelnost periodicke ulohy pro funkcionalni diferencialni rovnice prvniho řadu.
Georgian Mathematical Journal | 1999
Alexander Lomtatidze; N. Partsvania
Sufficient conditions are established for the oscillation and nonoscillation of the system
Advanced Nonlinear Studies | 2007
Alberto Cabada; Alexander Lomtatidze; Milan Tvrdý
Abstract We study the singular periodic boundary value problem of the form (|u′|p−2 u′)′ = f(t, u), u(0) = u(T), u′(0) = u′(T), where 1 < p < ∞ and f ∈ Car([0, T] × (0,∞)) can have a repulsive space singularity at x = 0. Contrary to previous results by Mawhin and Jebelean, Liu Bing and Rachůnková and Tvrdý, we need not assume any strong force conditions. Our main existence results rely on a new antimaximum principle for periodic quasilinear periodic problem, which has an independent meaning.
The 7'th Colloquium on the Qualitative Theory of Differential Equations | 2003
Alexander Lomtatidze; Robert Hakl; Jiří Šremr
Unimprovable efficient conditions are established for the existence and uniqueness of a nonnegative solution of the problem u′(t) = `(u)(t) + q(t), u(a) = h(u) + c, where ` : C([a, b]; R) → L([a, b]; R) is a linear bounded operator, h : C([a, b]; R) → R is a linear bounded functional, q ∈ L([a, b]; R) and c > 0.
Georgian Mathematical Journal | 2002
Alexander Lomtatidze; Robert Hakl; Jiří Šremr
Abstract Nonimprovable in a certain sense, sufficient conditions for the solvability and unique solvability of the problem 𝑢′ (𝑡) = 𝐹 (𝑢) (𝑡), 𝑢(𝑎) – λ𝑢(𝑏) = ℎ(𝑢) are established, where 𝐹 : 𝐶([𝑎, 𝑏]; 𝑅) → 𝐿([𝑎, 𝑏];𝑅) is a continuous operator satisfying the Carathéodory condition, ℎ : 𝐶([𝑎, 𝑏]; 𝑅) → 𝑅 is a continuous functional, and λ ∈ 𝑅+.
Abstract and Applied Analysis | 2011
Alexander Domoshnitsky; Alexander Lomtatidze; Abraham Maghakyan; Jiří Šremr
Theorems on the unique solvability and nonnegativity of solutions to the characteristic initial value problem 𝑢(1,1)(𝑡,𝑥)=l0(𝑢)(𝑡,𝑥)