Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander M. Jones is active.

Publication


Featured researches published by Alexander M. Jones.


Annual Review of Plant Biology | 2012

Quantitative Imaging with Fluorescent Biosensors

Sakiko Okumoto; Alexander M. Jones; Wolf B. Frommer

Molecular activities are highly dynamic and can occur locally in subcellular domains or compartments. Neighboring cells in the same tissue can exist in different states. Therefore, quantitative information on the cellular and subcellular dynamics of ions, signaling molecules, and metabolites is critical for functional understanding of organisms. Mass spectrometry is generally used for monitoring ions and metabolites; however, its temporal and spatial resolution are limited. Fluorescent proteins have revolutionized many areas of biology-e.g., fluorescent proteins can report on gene expression or protein localization in real time-yet promoter-based reporters are often slow to report physiologically relevant changes such as calcium oscillations. Therefore, novel tools are required that can be deployed in specific cells and targeted to subcellular compartments in order to quantify target molecule dynamics directly. We require tools that can measure enzyme activities, protein dynamics, and biophysical processes (e.g., membrane potential or molecular tension) with subcellular resolution. Today, we have an extensive suite of tools at our disposal to address these challenges, including translocation sensors, fluorescence-intensity sensors, and Förster resonance energy transfer sensors. This review summarizes sensor design principles, provides a database of sensors for more than 70 different analytes/processes, and gives examples of applications in quantitative live cell imaging.


Science | 2014

Border control--a membrane-linked interactome of Arabidopsis.

Alexander M. Jones; Yuan Hu Xuan; Meng Xu; Rui-Sheng Wang; Cheng-Hsun Ho; Sylvie Lalonde; Chang Hun You; Maria I. Sardi; Saman A. Parsa; Erika Smith-Valle; Tianying Su; Keith A. Frazer; Guillaume Pilot; Réjane Pratelli; Guido Grossmann; Biswa R. Acharya; Heng Cheng Hu; Florent Villiers; Chuanli Ju; Kouji Takeda; Zhao Su; Qunfeng Dong; Sarah M. Assmann; Jin Chen; June M. Kwak; Julian I. Schroeder; Réka Albert; Seung Y. Rhee; Wolf B. Frommer

Degrees of Separation Proteins embedded in membranes represent an interesting point of communication between the cell and its environment, but their localization to membranes can make them difficult to study. Jones et al. (p. 711) found an approach to catalog thousands of interactions involving membrane proteins and membrane-associated signaling machinery—including many previously uncharacterized proteins. With a focus on the model plant Arabidopsis, several of the identified interactions fill gaps in important signal transduction chains, while others point to functions for enigmatic unknown proteins. Amembrane and signaling protein interaction network for gene discovery and hypothesis generation is identified in Arabidopsis. Cellular membranes act as signaling platforms and control solute transport. Membrane receptors, transporters, and enzymes communicate with intracellular processes through protein-protein interactions. Using a split-ubiquitin yeast two-hybrid screen that covers a test-space of 6.4 × 106 pairs, we identified 12,102 membrane/signaling protein interactions from Arabidopsis. Besides confirmation of expected interactions such as heterotrimeric G protein subunit interactions and aquaporin oligomerization, >99% of the interactions were previously unknown. Interactions were confirmed at a rate of 32% in orthogonal in planta split–green fluorescent protein interaction assays, which was statistically indistinguishable from the confirmation rate for known interactions collected from literature (38%). Regulatory associations in membrane protein trafficking, turnover, and phosphorylation include regulation of potassium channel activity through abscisic acid signaling, transporter activity by a WNK kinase, and a brassinolide receptor kinase by trafficking-related proteins. These examples underscore the utility of the membrane/signaling protein interaction network for gene discovery and hypothesis generation in plants and other organisms.


eLife | 2014

Abscisic acid dynamics in roots detected with genetically encoded FRET sensors

Alexander M. Jones; Jonas åH Danielson; Shruti N ManojKumar; Viviane Lanquar; Guido Grossmann; Wolf B. Frommer

Cytosolic hormone levels must be tightly controlled at the level of influx, efflux, synthesis, degradation and compartmentation. To determine ABA dynamics at the single cell level, FRET sensors (ABACUS) covering a range ∼0.2–800 µM were engineered using structure-guided design and a high-throughput screening platform. When expressed in yeast, ABACUS1 detected concentrative ABA uptake mediated by the AIT1/NRT1.2 transporter. Arabidopsis roots expressing ABACUS1-2µ (Kd∼2 µM) and ABACUS1-80µ (Kd∼80 µM) respond to perfusion with ABA in a concentration-dependent manner. The properties of the observed ABA accumulation in roots appear incompatible with the activity of known ABA transporters (AIT1, ABCG40). ABACUS reveals effects of external ABA on homeostasis, that is, ABA-triggered induction of ABA degradation, modification, or compartmentation. ABACUS can be used to study ABA responses in mutants and quantitatively monitor ABA translocation and regulation, and identify missing components. The sensor screening platform promises to enable rapid fine-tuning of the ABA sensors and engineering of plant and animal hormone sensors to advance our understanding of hormone signaling. DOI: http://dx.doi.org/10.7554/eLife.01741.001


Nature Protocols | 2011

Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells

Bi Huei Hou; Hitomi Takanaga; Guido Grossmann; Li Qing Chen; Xiao Qing Qu; Alexander M. Jones; Sylvie Lalonde; Oliver Schweissgut; Wolfgan Wiechert; Wolf B. Frommer

Knowledge of the in vivo levels, distribution and flux of ions and metabolites is crucial to our understanding of physiology in both healthy and diseased states. The quantitative analysis of the dynamics of ions and metabolites with subcellular resolution in vivo poses a major challenge for the analysis of metabolic processes. Genetically encoded Förster resonance energy transfer (FRET) sensors can be used for real-time in vivo detection of metabolites. FRET sensor proteins, for example, for glucose, can be targeted genetically to any cellular compartment, or even to subdomains (e.g., a membrane surface), by adding signal sequences or fusing the sensors to specific proteins. The sensors can be used for analyses in individual mammalian cells in culture, in tissue slices and in intact organisms. Applications include gene discovery, high-throughput drug screens or systematic analysis of regulatory networks affecting uptake, efflux and metabolism. Quantitative analyses obtained with the help of FRET sensors for glucose or other ions and metabolites provide valuable data for modeling of flux. Here we provide a detailed protocol for monitoring glucose levels in the cytosol of mammalian cell cultures through the use of FRET glucose sensors; moreover, the protocol can be used for other ions and metabolites and for analyses in other organisms, as has been successfully demonstrated in bacteria, yeast and even intact plants. The whole procedure typically takes ∼4 d including seeding and transfection of mammalian cells; the FRET-based analysis of transfected cells takes ∼5 h.


Journal of Bacteriology | 2007

Salicylic Acid, Yersiniabactin, and Pyoverdin Production by the Model Phytopathogen Pseudomonas syringae pv. tomato DC3000: Synthesis, Regulation, and Impact on Tomato and Arabidopsis Host Plants

Alexander M. Jones; Steven E. Lindow; Mary C. Wildermuth

A genetically tractable model plant pathosystem, Pseudomonas syringae pv. tomato DC3000 on tomato and Arabidopsis thaliana hosts, was used to investigate the role of salicylic acid (SA) and iron acquisition via siderophores in bacterial virulence. Pathogen-induced SA accumulation mediates defense in these plants, and DC3000 contains the genes required for the synthesis of SA, the SA-incorporated siderophore yersiniabactin (Ybt), and the fluorescent siderophore pyoverdin (Pvd). We found that DC3000 synthesizes SA, Ybt, and Pvd under iron-limiting conditions in culture. Synthesis of SA and Ybt by DC3000 requires pchA, an isochorismate synthase gene in the Ybt genomic cluster, and exogenous SA can restore Ybt production by the pchA mutant. Ybt was also produced by DC3000 in planta, suggesting that Ybt plays a role in DC3000 pathogenesis. However, the pchA mutant did not exhibit any growth defect or altered virulence in plants. This lack of phenotype was not attributable to plant-produced SA restoring Ybt production, as the pchA mutant grew similarly to DC3000 in an Arabidopsis SA biosynthetic mutant, and in planta Ybt was not detected in pchA-infected wild-type plants. In culture, no growth defect was observed for the pchA mutant versus DC3000 for any condition tested. Instead, enhanced growth of the pchA mutant was observed under stringent iron limitation and additional stresses. This suggests that SA and Ybt production by DC3000 is costly and that Pvd is sufficient for iron acquisition. Further exploration of the comparative synthesis and utility of Ybt versus Pvd production by DC3000 found siderophore-dependent amplification of ybt gene expression to be absent, suggesting that Ybt may play a yet unknown role in DC3000 pathogenesis.


Journal of Bacteriology | 2011

The Phytopathogen Pseudomonas syringae pv. tomato DC3000 Has Three High-Affinity Iron-Scavenging Systems Functional under Iron Limitation Conditions but Dispensable for Pathogenesis

Alexander M. Jones; Mary C. Wildermuth

High-affinity iron scavenging through the use of siderophores is a well-established virulence determinant in mammalian pathogenesis. However, few examples have been reported for plant pathogens. Here, we use a genetic approach to investigate the role of siderophores in Pseudomonas syringae pv. tomato DC3000 (DC3000) virulence in tomato. DC3000, an agronomically important pathogen, has two known siderophores for high-affinity iron scavenging, yersiniabactin and pyoverdin, and we uncover a third siderophore, citrate, required for growth when iron is limiting. Though growth of a DC3000 triple mutant unable to either synthesize or import these siderophores is severely restricted in iron-limited culture, it is fully pathogenic. One explanation for this phenotype is that the DC3000 triple mutant is able to directly pirate plant iron compounds such as heme/hemin or iron-nicotianamine, and our data indicate that DC3000 can import iron-nicotianamine with high affinity. However, an alternative explanation, supported by data from others, is that the pathogenic environment of DC3000 (i.e., leaf apoplast) is not iron limited but is iron replete, with available iron of >1 μM. Growth of the triple mutant in culture is restored to wild-type levels by supplementation with a variety of iron chelates at >1 μM, including iron(III) dicitrate, a dominant chelate of the leaf apoplast. This suggests that lower-affinity iron import would be sufficient for DC3000 iron nutrition in planta and is in sharp contrast to the high-affinity iron-scavenging mechanisms required in mammalian pathogenesis.


Current Opinion in Plant Biology | 2013

In vivo biochemistry: Applications for small molecule biosensors in plant biology

Alexander M. Jones; Guido Grossmann; Jonas åH Danielson; Davide Sosso; Li Qing Chen; Cheng-Hsun Ho; Wolf B. Frommer

Revolutionary new technologies, namely in the areas of DNA sequencing and molecular imaging, continue to impact new discoveries in plant science and beyond. For decades we have been able to determine properties of enzymes, receptors and transporters in vitro or in heterologous systems, and more recently been able to analyze their regulation at the transcriptional level, to use GFP reporters for obtaining insights into cellular and subcellular localization, and tp measure ion and metabolite levels with unprecedented precision using mass spectrometry. However, we lack key information on the location and dynamics of the substrates of enzymes, receptors and transporters, and on the regulation of these proteins in their cellular environment. Such information can now be obtained by transitioning from in vitro to in vivo biochemistry using biosensors. Genetically encoded fluorescent protein-based sensors for ion and metabolite dynamics provide highly resolved spatial and temporal information, and are complemented by sensors for pH, redox, voltage, and tension. They serve as powerful tools for identifying missing processes (e.g., glucose transport across ER membranes), components (e.g., SWEET sugar transporters for cellular sugar efflux), and signaling networks (e.g., from systematic screening of mutants that affect sugar transport or cytosolic and vacuolar pH). Combined with the knowledge of properties of enzymes and transporters and their interactions with the regulatory machinery, biosensors promise to be key diagnostic tools for systems and synthetic biology.


Biochemical Journal | 2011

In vivo biochemistry: quantifying ion and metabolite levels in individual cells or cultures of yeast.

Clara Bermejo; Jennifer C. Ewald; Viviane Lanquar; Alexander M. Jones; Wolf B. Frommer

Over the past decade, we have learned that cellular processes, including signalling and metabolism, are highly compartmentalized, and that relevant changes in metabolic state can occur at sub-second timescales. Moreover, we have learned that individual cells in populations, or as part of a tissue, exist in different states. If we want to understand metabolic processes and signalling better, it will be necessary to measure biochemical and biophysical responses of individual cells with high temporal and spatial resolution. Fluorescence imaging has revolutionized all aspects of biology since it has the potential to provide information on the cellular and subcellular distribution of ions and metabolites with sub-second time resolution. In the present review we summarize recent progress in quantifying ions and metabolites in populations of yeast cells as well as in individual yeast cells with the help of quantitative fluorescent indicators, namely FRET metabolite sensors. We discuss the opportunities and potential pitfalls and the controls that help preclude misinterpretation.


New Phytologist | 2016

A new look at stress: abscisic acid patterns and dynamics at high‐resolution

Alexander M. Jones

Abscisic acid (ABA) is a key phytohormone promoting abiotic stress tolerance as well as developmental processes such as seed dormancy. A spatiotemporal map of ABA concentrations would greatly advance our understanding of the cell type and timing of ABA action. Organ and tissue-level ABA measurements, as well as indirect in vivo measurements such as cell-specific transcriptional analysis of ABA metabolic enzymes and ABA-responsive promoters, have all contributed to current views of the localization and timing of ABA accumulations. Recently developed Förster resonance energy transfer (FRET) biosensors for ABA that sense ABA levels directly promise to add unprecedented resolution to in vivo ABA spatiotemporal mapping and expand our knowledge of the mechanisms controlling ABA levels in space and time.


Journal of Experimental Botany | 2015

Identification of rice cornichon as a possible cargo receptor for the Golgi-localized sodium transporter OsHKT1;3

Paul Rosas-Santiago; Daniel Lagunas-Gómez; Bronwyn J. Barkla; Rosario Vera-Estrella; Sylvie Lalonde; Alexander M. Jones; Wolf B. Frommer; Olga Zimmermannova; Hana Sychrova; Omar Pantoja

Highlight The cargo receptor cornichon, located in the endoplasmic reticulum, interacts with the low-affinity Na+ transporter OsHKT1;3 for its delivery to the Golgi apparatus.

Collaboration


Dive into the Alexander M. Jones's collaboration.

Top Co-Authors

Avatar

Wolf B. Frommer

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sylvie Lalonde

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Jonas åH Danielson

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Li Qing Chen

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Viviane Lanquar

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A Rizza

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

A Walia

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge