Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander M. Lewis is active.

Publication


Featured researches published by Alexander M. Lewis.


Nature Chemical Biology | 2009

Identification of a chemical probe for NAADP by virtual screening

Edmund Naylor; Abdelilah Arredouani; Sridhar R. Vasudevan; Alexander M. Lewis; Raman Parkesh; Akiko Mizote; Daniel G. Rosen; Justyn M. Thomas; Minoru Izumi; A. Ganesan; A Galione; Grant C. Churchill

Research into the biological role of the Ca2+-releasing second messenger NAADP (nicotinic acid adenine dinucleotide phosphate) has been hampered by a lack of chemical probes. To find new chemical probes for exploring NAADP signaling, we turned to virtual screening, which can evaluate millions of molecules rapidly and inexpensively. We used NAADP as the query ligand to screen the chemical library ZINC for compounds with 3D-shape and electrostatic similarity. We tested the top-ranking hits in a sea urchin egg bioassay and found that one hit, Ned-19, blocks NAADP signaling at nanomolar concentrations. In intact cells, Ned-19 blocked NAADP signaling and fluorescently labeled NAADP receptors. Moreover, we show the utility of Ned-19 as a chemical probe by using it to demonstrate that NAADP is a key causal link between glucose sensing and Ca2+ increases in mouse pancreatic beta cells.


Current Biology | 2005

Role of NAADP and cADPR in the Induction and Maintenance of Agonist-Evoked Ca2+ Spiking in Mouse Pancreatic Acinar Cells

Michiko Yamasaki; Justyn M. Thomas; Grant C. Churchill; Clive Garnham; Alexander M. Lewis; José-Manuel Cancela; Sandip Patel; Antony Galione

Nicotinic acid adenine dinucleotide phosphate (NAADP) and cyclic adenosine diphosphate ribose (cADPR) were first demonstrated to mobilize Ca2+ in sea urchin eggs. In the absence of direct measurements of these messengers, pharmacological studies alone have implicated these molecules as intracellular second messengers for specific cell surface receptor agonists. We now report that in mouse pancreatic acinar cells, cholecystokinin, but not acetylcholine, evokes rapid and transient increases in NAADP levels in a concentration-dependent manner. In contrast, both cholecystokinin and acetylcholine-mediated production of cADPR followed a very different time course. The rapid and transient production of NAADP evoked by cholecystokinin precedes the onset of the Ca2+ signal and is consistent with a role for NAADP in the initiation of the Ca2+ response. Continued agonist-evoked Ca2+ spiking is maintained by prolonged elevations of cADPR levels through sensitization of Ca2+ -induced Ca2+ -release channels. This study represents the first direct comparison of NAADP and cADPR measurements, and the profound differences observed in their time courses provide evidence in support of distinct roles of these Ca2+ -mobilizing messengers in shaping specific Ca2+ signals during agonist stimulation.


Journal of Cell Biology | 2013

Bidirectional Ca2+ signaling occurs between the endoplasmic reticulum and acidic organelles

Anthony J. Morgan; Lianne C. Davis; Siegfried Karl Wagner; Alexander M. Lewis; John Parrington; Grant C. Churchill; Antony Galione

After acidic organelles induce signaling to activate ER calcium ion release, local microdomains of high calcium at ER–acidic organelle junctions feed back to activate further acidic organelle calcium release.


Blood | 2011

NAADP links histamine H1 receptors to secretion of von Willebrand factor in human endothelial cells

Bianca Esposito; Guido Gambara; Alexander M. Lewis; Fioretta Palombi; Alessio D'Alessio; Lewis Taylor; Armando A. Genazzani; Elio Ziparo; Antony Galione; Grant C. Churchill; Antonio Filippini

A variety of endothelial agonist-induced responses are mediated by rises in intracellular Ca(2+), suggesting that different Ca(2+) signatures could fine-tune specific inflammatory and thrombotic activities. In search of new intracellular mechanisms modulating endothelial effector functions, we identified nicotinic acid adenine dinucleotide phosphate (NAADP) as a crucial second messenger in histamine-induced Ca(2+) release via H1 receptors (H1R). NAADP is a potent intracellular messenger mobilizing Ca(2+) from lysosome-like acidic compartments, functionally coupled to the endoplasmic reticulum. Using the human EA.hy926 endothelial cell line and primary human umbilical vein endothelial cells, we show that selective H1R activation increases intracellular NAADP levels and that H1R-induced calcium release involves both acidic organelles and the endoplasmic reticulum. To assess that NAADP links H1R to Ca(2+)-signaling we used both microinjection of self-inactivating concentrations of NAADP and the specific NAADP receptor antagonist, Ned-19, both of which completely abolished H1R-induced but not thrombin-induced Ca(2+) mobilization. Interestingly, H1R-mediated von Willebrand factor (VWF) secretion was completely inhibited by treatment with Ned-19 and by siRNA knockdown of 2-pore channel NAADP receptors, whereas thrombin-induced VWF secretion failed to be affected. These findings demonstrate a novel and specific Ca(2+)-signaling mechanism activated through H1R in human endothelial cells, which reveals an obligatory role of NAADP in the control of VWF secretion.


Biochemical Journal | 2009

Recruitment of NAADP-sensitive acidic Ca2+ stores by glutamate.

Vinita Pandey; Chia-Chen Chuang; Alexander M. Lewis; Parvinder K. Aley; Eugen Brailoiu; Nae J. Dun; Grant C. Churchill; Sandip Patel

NAADP (nicotinic acid-adenine dinucleotide phosphate) is an unusual second messenger thought to mobilize acidic Ca(2+) stores, such as lysosomes or lysosome-like organelles, that are functionally coupled to the ER (endoplasmic reticulum). Although NAADP-sensitive Ca(2+) stores have been described in neurons, the physiological cues that recruit them are not known. Here we show that in both hippocampal neurons and glia, extracellular application of glutamate, in the absence of external Ca(2+), evoked cytosolic Ca(2+) signals that were inhibited by preventing organelle acidification or following osmotic bursting of lysosomes. The sensitivity of both cell types to glutamate correlated well with lysosomal Ca(2+) content. However, interfering with acidic compartments was largely without effect on the Ca(2+) content of the ER or Ca(2+) signals in response to ATP. Glutamate but not ATP elevated cellular NAADP levels. Our results provide evidence for the agonist-specific recruitment of NAADP-sensitive Ca(2+) stores by glutamate. This links the actions of NAADP to a major neurotransmitter in the brain.


Journal of Biological Chemistry | 2009

Analogues of the Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Antagonist Ned-19 Indicate Two Binding Sites on the NAADP Receptor

Daniel G. Rosen; Alexander M. Lewis; Akiko Mizote; Justyn M. Thomas; Parvinder K. Aley; Sridhar R. Vasudevan; Raman Parkesh; A Galione; Minoru Izumi; A. Ganesan; Grant C. Churchill

Nicotinic acid adenine dinucleotide phosphate (NAADP) is a Ca2+-releasing messenger. Biological data suggest that its receptor has two binding sites: one high-affinity locking site and one low-affinity opening site. To directly address the presence and function of these putative binding sites, we synthesized and tested analogues of the NAADP antagonist Ned-19. Ned-19 itself inhibits both NAADP-mediated Ca2+ release and NAADP binding. A fluorometry bioassay was used to assess NAADP-mediated Ca2+ release, whereas a radioreceptor assay was used to assess binding to the NAADP receptor (only at the high-affinity site). In Ned-20, the fluorine is para rather than ortho as in Ned-19. Ned-20 does not inhibit NAADP-mediated Ca2+ release but inhibits NAADP binding. Conversely, Ned-19.4 (a methyl ester of Ned-19) inhibits NAADP-mediated Ca2+ release but cannot inhibit NAADP binding. Furthermore, Ned-20 prevents the self-desensitization response characteristic of NAADP in sea urchin eggs, confirming that this response is mediated by a high-affinity allosteric site to which NAADP binds in the radioreceptor assay. Collectively, these data provide the first direct evidence for two binding sites (one high- and one low-affinity) on the NAADP receptor.


Journal of Biological Chemistry | 2010

The Calcium-mobilizing Messenger Nicotinic Acid Adenine Dinucleotide Phosphate Participates in Sperm Activation by Mediating the Acrosome Reaction

Sridhar R. Vasudevan; Alexander M. Lewis; Jennifer W. Chan; Claire L. Machin; Debroshi Sinha; Antony Galione; Grant C. Churchill

Before a sperm can fertilize an egg it must undergo a final activation step induced by the egg termed the acrosome reaction. During the acrosome reaction a lysosome-related organelle, the acrosome, fuses with the plasma membrane to release hydrolytic enzymes and expose an egg-binding protein. Because NAADP (nicotinic acid adenine dinucleotide phosphate) releases Ca2+ from acidic lysosome-related organelles in other cell types, we investigated a possible role for NAADP in mediating the acrosome reaction. We report that NAADP binds with high affinity to permeabilized sea urchin sperm. Moreover, we used Mn2+ quenching of luminal fura-2 and 45Ca2+ to directly demonstrate NAADP regulation of a cation channel on the acrosome. Additionally, we show that NAADP synthesis occurs through base exchange and is driven by an increase in Ca2+. We propose a new model for acrosome reaction signaling in which Ca2+ influx initiated by egg jelly stimulates NAADP synthesis and that this NAADP acts on its receptor/channel on the acrosome to release Ca2+ to drive acrosomal exocytosis.


FEBS Letters | 2011

NAADP mediates ATP-induced Ca2+ signals in astrocytes.

Miquel Barceló-Torns; Alexander M. Lewis; Albert Gubern; David Barneda; Duncan Bloor-Young; Fernado Picatoste; Grant C. Churchill; Enrique Claro; Roser Masgrau

Intracellular Ca2+ signals provide astrocytes with a specific form of excitability that enables them to regulate synaptic transmission. In this study, we demonstrate that NAADP‐AM, a membrane‐permeant analogue of the new second messenger nicotinic acid‐adenine dinucleotide phosphate (NAADP), mobilizes Ca2+ in astrocytes and that the response is blocked by Ned‐19, an antagonist of NAADP signalling. We also show that NAADP receptors are expressed in lysosome‐related acidic vesicles. Pharmacological disruption of either NAADP or lysosomal signalling reduced Ca2+ responses induced by ATP and endothelin‐1, but not by bradykinin. Furthermore, ATP increased endogenous NAADP levels. Overall, our data provide evidence for NAADP being an intracellular messenger for agonist‐mediated calcium signalling in astrocytes.


Journal of Biological Chemistry | 2015

Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Endolysosomal Two-pore Channels Modulate Membrane Excitability and Stimulus-Secretion Coupling in Mouse Pancreatic β Cells

Abdelilah Arredouani; Margarida Ruas; Stephan C. Collins; Raman Parkesh; Frederick Clough; Toby Pillinger; George Coltart; Katja Rietdorf; Andrew Royle; Paul Johnson; Matthias Braun; Quan Zhang; William Sones; Kenju Shimomura; Anthony J. Morgan; Alexander M. Lewis; Kai-Ting Chuang; Ruth Tunn; Joaquin Gadea; Lydia Teboul; Paula M. Heister; Patricia W. Tynan; Elisa A. Bellomo; Guy A. Rutter; Patrik Rorsman; Grant C. Churchill; John Parrington; Antony Galione

Background: TPCs are regulated by NAADP and other factors. Results: NAADP-induced Ca2+ release from acidic stores evokes depolarizing currents in pancreatic β cells. Inhibition of NAADP signaling or TPC knock out attenuates Ca2+ signaling and insulin secretion. Conclusion: NAADP-evoked Ca2+ release enhances β cell excitability and insulin secretion in response to glucose or sulfonylureas. Significance: NAADP signaling pathways offer novel therapeutic targets for diabetes treatment. Pancreatic β cells are electrically excitable and respond to elevated glucose concentrations with bursts of Ca2+ action potentials due to the activation of voltage-dependent Ca2+ channels (VDCCs), which leads to the exocytosis of insulin granules. We have examined the possible role of nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca2+ release from intracellular stores during stimulus-secretion coupling in primary mouse pancreatic β cells. NAADP-regulated Ca2+ release channels, likely two-pore channels (TPCs), have recently been shown to be a major mechanism for mobilizing Ca2+ from the endolysosomal system, resulting in localized Ca2+ signals. We show here that NAADP-mediated Ca2+ release from endolysosomal Ca2+ stores activates inward membrane currents and depolarizes the β cell to the threshold for VDCC activation and thereby contributes to glucose-evoked depolarization of the membrane potential during stimulus-response coupling. Selective pharmacological inhibition of NAADP-evoked Ca2+ release or genetic ablation of endolysosomal TPC1 or TPC2 channels attenuates glucose- and sulfonylurea-induced membrane currents, depolarization, cytoplasmic Ca2+ signals, and insulin secretion. Our findings implicate NAADP-evoked Ca2+ release from acidic Ca2+ storage organelles in stimulus-secretion coupling in β cells.


Biochemical and Biophysical Research Communications | 2012

ß-Adrenergic receptor signaling increases NAADP and cADPR levels in the heart

Alexander M. Lewis; Parvinder K. Aley; Ali Roomi; Justyn M. Thomas; Roser Masgrau; Clive Garnham; Katherine Shipman; Claire Paramore; Duncan Bloor-Young; Luke Sanders; Derek A. Terrar; Antony Galione; Grant C. Churchill

Evidence suggests that β-Adrenergic receptor signaling increases heart rate and force through not just cyclic AMP but also the Ca(2+)-releasing second messengers NAADP (nicotinic acid adenine dinucleotide phosphate) and cADPR (cyclic ADP-ribose). Nevertheless, proof of the physiological relevance of these messengers requires direct measurements of their levels in response to receptor stimulation. Here we report that in intact Langendorff-perfused hearts β-adrenergic stimulation increased both messengers, with NAADP being transient and cADPR being sustained. Both NAADP and cADPR have physiological and therefore pathological relevance by providing alternative drug targets in the β-adrenergic receptor signaling pathway.

Collaboration


Dive into the Alexander M. Lewis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel G. Rosen

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge