Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander M. Long is active.

Publication


Featured researches published by Alexander M. Long.


Journal of Biological Chemistry | 2008

c-Met inhibitors with novel binding mode show activity against several hereditary papillary renal cell carcinoma-related mutations.

Steven Bellon; Paula Kaplan-Lefko; Yajing Yang; Yihong Zhang; Jodi Moriguchi; Karen Rex; Carol W. Johnson; Paul Rose; Alexander M. Long; Anne O'connor; Yan Gu; Angela Coxon; Tae-Seong Kim; Andrew Tasker; Teresa L. Burgess; Isabelle Dussault

c-Met is a receptor tyrosine kinase often deregulated in human cancers, thus making it an attractive drug target. One mechanism by which c-Met deregulation leads to cancer is through gain-of-function mutations. Therefore, small molecules capable of targeting these mutations could offer therapeutic benefits for affected patients. SU11274 was recently described and reported to inhibit the activity of the wild-type and some mutant forms of c-Met, whereas other mutants are resistant to inhibition. We identified a novel series of c-Met small molecule inhibitors that are active against multiple mutants previously identified in hereditary papillary renal cell carcinoma patients. AM7 is active against wild-type c-Met as well as several mutants, inhibits c-Met-mediated signaling in MKN-45 and U-87 MG cells, and inhibits tumor growth in these two models grown as xenografts. The crystal structures of AM7 and SU11274 bound to unphosphorylated c-Met have been determined. The AM7 structure reveals a novel binding mode compared with other published c-Met inhibitors and SU11274. The molecule binds the kinase linker and then extends into a new hydrophobic binding site. This binding site is created by a significant movement of the C-helix and so represents an inactive conformation of the c-Met kinase. Thus, our results demonstrate that it is possible to identify and design inhibitors that will likely be active against mutants found in different cancers.


Journal of Medicinal Chemistry | 2012

Structure-based design of novel inhibitors of the MDM2-p53 interaction.

Yosup Rew; Daqing Sun; Felix Gonzalez-Lopez de Turiso; Michael D. Bartberger; Hilary P. Beck; Jude Canon; Ada Chen; David Chow; Jeffrey Deignan; Brian M. Fox; Darin Gustin; Xin Huang; Min Jiang; Xianyun Jiao; Lixia Jin; Frank Kayser; David J. Kopecky; Yihong Li; Mei-Chu Lo; Alexander M. Long; Klaus Michelsen; Jonathan D. Oliner; Tao Osgood; Mark L. Ragains; Anne Y. Saiki; Steve Schneider; Maria M. Toteva; Peter Yakowec; Xuelei Yan; Qiuping Ye

Structure-based rational design led to the discovery of novel inhibitors of the MDM2-p53 protein-protein interaction. The affinity of these compounds for MDM2 was improved through conformational control of both the piperidinone ring and the appended N-alkyl substituent. Optimization afforded 29 (AM-8553), a potent and selective MDM2 inhibitor with excellent pharmacokinetic properties and in vivo efficacy.


Journal of Medicinal Chemistry | 2008

Discovery and Optimization of Triazolopyridazines as Potent and Selective Inhibitors of the c-Met Kinase.

Brian K. Albrecht; Jean-Christophe Harmange; David Bauer; Loren Berry; Christiane Bode; Alessandro Boezio; April Chen; Deborah Choquette; Isabelle Dussault; Cary Fridrich; Satoko Hirai; Doug Hoffman; Jay Larrow; Paula Kaplan-Lefko; Jasmine Lin; Julia Lohman; Alexander M. Long; Jodi Moriguchi; Anne O'connor; Michele Potashman; Monica Reese; Karen Rex; Aaron C. Siegmund; Kavita Shah; Roman Shimanovich; Stephanie K. Springer; Yohannes Teffera; Yajing Yang; Yihong Zhang; Steven Bellon

Tumorigenesis is a multistep process in which oncogenes play a key role in tumor formation, growth, and maintenance. MET was discovered as an oncogene that is activated by its ligand, hepatocyte growth factor. Deregulated signaling in the c-Met pathway has been observed in multiple tumor types. Herein we report the discovery of potent and selective triazolopyridazine small molecules that inhibit c-Met activity.


Journal of Medicinal Chemistry | 2014

Discovery of AMG 232, a Potent, Selective, and Orally Bioavailable MDM2–p53 Inhibitor in Clinical Development

Daqing Sun; Zhihong Li; Yosup Rew; Michael W. Gribble; Michael D. Bartberger; Hilary P. Beck; Jude Canon; Ada Chen; Xiaoqi Chen; David Chow; Jeffrey Deignan; Jason Duquette; John Eksterowicz; Benjamin Fisher; Brian M. Fox; Jiasheng Fu; Ana Z. Gonzalez; Felix Gonzalez-Lopez de Turiso; Jonathan B. Houze; Xin Huang; Min Jiang; Lixia Jin; Frank Kayser; Jiwen Liu; Mei-Chu Lo; Alexander M. Long; Brian Lucas; Lawrence R. McGee; Joel McIntosh; Jeff Mihalic

We recently reported the discovery of AM-8553 (1), a potent and selective piperidinone inhibitor of the MDM2-p53 interaction. Continued research investigation of the N-alkyl substituent of this series, focused in particular on a previously underutilized interaction in a shallow cleft on the MDM2 surface, led to the discovery of a one-carbon tethered sulfone which gave rise to substantial improvements in biochemical and cellular potency. Further investigation produced AMG 232 (2), which is currently being evaluated in human clinical trials for the treatment of cancer. Compound 2 is an extremely potent MDM2 inhibitor (SPR KD = 0.045 nM, SJSA-1 EdU IC50 = 9.1 nM), with remarkable pharmacokinetic properties and in vivo antitumor activity in the SJSA-1 osteosarcoma xenograft model (ED50 = 9.1 mg/kg).


Journal of the American Chemical Society | 2012

Ordering of the N-terminus of human MDM2 by small molecule inhibitors.

Klaus Michelsen; John B. Jordan; Jeffrey C. Lewis; Alexander M. Long; Evelyn Yang; Yosup Rew; Jing Zhou; Peter Yakowec; Paul D. Schnier; Xin Huang; Leszek Poppe

Restoration of p53 function through the disruption of the MDM2-p53 protein complex is a promising strategy for the treatment of various types of cancer. Here, we present kinetic, thermodynamic, and structural rationale for the remarkable potency of a new class of MDM2 inhibitors, the piperidinones. While these compounds bind to the same site as previously reported for small molecule inhibitors, such as the Nutlins, data presented here demonstrate that the piperidinones also engage the N-terminal region (residues 10-16) of human MDM2, in particular, Val14 and Thr16. This portion of MDM2 is unstructured in both the apo form of the protein and in MDM2 complexes with p53 or Nutlin, but adopts a novel β-strand structure when complexed with the piperidinones. The ordering of the N-terminus upon binding of the piperidinones extends the current model of MDM2-p53 interaction and provides a new route to rational design of superior inhibitors.


Journal of Medicinal Chemistry | 2008

Naphthamides as novel and potent vascular endothelial growth factor receptor tyrosine kinase inhibitors: design, synthesis, and evaluation.

Jean-Christophe Harmange; Matthew Weiss; Julie Germain; Anthony Polverino; George Borg; James Bready; Danlin Chen; Deborah Choquette; Angela Coxon; Tom DeMelfi; Lucian DiPietro; Nicholas Doerr; Juan Estrada; Julie Flynn; Russell Graceffa; Shawn P. Harriman; Stephen Kaufman; Daniel S. La; Alexander M. Long; Matthew W. Martin; Sesha Neervannan; Vinod F. Patel; Michele Potashman; Kelly Regal; Phillip M. Roveto; Michael Schrag; Charlie Starnes; Andrew Tasker; Yohannes Teffera; Ling Wang

A series of naphthyl-based compounds were synthesized as potential inhibitors of vascular endothelial growth factor (VEGF) receptors. Investigations of structure-activity relationships led to the identification of a series of naphthamides that are potent inhibitors of the VEGF receptor tyrosine kinase family. Numerous analogues demonstrated low nanomolar inhibition of VEGF-dependent human umbilical vein endothelial cell (HUVEC) proliferation, and of these several compounds possessed favorable pharmacokinetic (PK) profiles. In particular, compound 48 demonstrated significant antitumor efficacy against established HT29 human colon adenocarcinoma xenografts implanted in athymic mice. A full account of the preparation, structure-activity relationships, pharmacokinetic properties, and pharmacology of analogues within this series is presented.


Journal of Medicinal Chemistry | 2013

Rational Design and Binding Mode Duality of MDM2–p53 Inhibitors

Felix Gonzalez-Lopez de Turiso; Daqing Sun; Yosup Rew; Michael D. Bartberger; Hilary P. Beck; Jude Canon; Ada Chen; David Chow; Tiffany L. Correll; Xin Huang; Lisa Julian; Frank Kayser; Mei-Chu Lo; Alexander M. Long; Dustin L. McMinn; Jonathan D. Oliner; Tao Osgood; Jay P. Powers; Anne Y. Saiki; Steve Schneider; Paul Shaffer; Shou-Hua Xiao; Peter Yakowec; Xuelei Yan; Qiuping Ye; Dongyin Yu; Xiaoning Zhao; Jing Zhou; Julio C. Medina; Steven H. Olson

Structural analysis of both the MDM2-p53 protein-protein interaction and several small molecules bound to MDM2 led to the design and synthesis of tetrasubstituted morpholinone 10, an MDM2 inhibitor with a biochemical IC50 of 1.0 μM. The cocrystal structure of 10 with MDM2 inspired two independent optimization strategies and resulted in the discovery of morpholinones 16 and 27 possessing distinct binding modes. Both analogues were potent MDM2 inhibitors in biochemical and cellular assays, and morpholinone 27 (IC50 = 0.10 μM) also displayed suitable PK profile for in vivo animal experiments. A pharmacodynamic (PD) experiment in mice implanted with human SJSA-1 tumors showed p21(WAF1) mRNA induction (2.7-fold over vehicle) upon oral dosing of 27 at 300 mg/kg.


Journal of Medicinal Chemistry | 2008

Evaluation of a Series of Naphthamides as Potent, Orally Active Vascular Endothelial Growth Factor Receptor-2 Tyrosine Kinase Inhibitors¶

Matthew Weiss; Jean-Christophe Harmange; Anthony Polverino; David Bauer; Loren Berry; Virginia Berry; George Borg; James Bready; Danlin Chen; Deborah Choquette; Angela Coxon; Tom DeMelfi; Nicholas Doerr; Juan Estrada; Julie Flynn; Russell Graceffa; Shawn P. Harriman; Stephen Kaufman; Daniel S. La; Alexander M. Long; Sesha Neervannan; Vinod F. Patel; Michele Potashman; Kelly Regal; Phillip M. Roveto; Michael Schrag; Charlie Starnes; Andrew Tasker; Yohannes Teffera; Douglas A. Whittington

We have previously shown N-arylnaphthamides can be potent inhibitors of vascular endothelial growth factor receptors (VEGFRs). N-Alkyl and N-unsubstituted naphthamides were prepared and found to yield nanomolar inhibitors of VEGFR-2 (KDR) with an improved selectivity profile against a panel of tyrosine and serine/threonine kinases. The inhibitory activity of this series was retained at the cellular level. Naphthamides 3, 20, and 22 exhibited good pharmacokinetics following oral dosing and showed potent inhibition of VEGF-induced angiogenesis in the rat corneal model. Once-daily oral administration of 22 for 14 days led to 85% inhibition of established HT29 colon cancer and Calu-6 lung cancer xenografts at doses of 10 and 20 mg/kg, respectively.


Journal of Medicinal Chemistry | 2008

Novel 2,3-dihydro-1,4-benzoxazines as potent and orally bioavailable inhibitors of tumor-driven angiogenesis.

Daniel S. La; Julie Belzile; James Bready; Angela Coxon; Thomas DeMelfi; Nicholas Doerr; Juan Estrada; Julie Flynn; Shaun Flynn; Russell Graceffa; Shawn P. Harriman; Jay Larrow; Alexander M. Long; Matthew W. Martin; Michael J. Morrison; Vinod F. Patel; Philip Roveto; Ling Wang; Matthew Weiss; Douglas A. Whittington; Yohannes Teffera; Zhiyang Zhao; Anthony Polverino; Jean-Christophe Harmange

Angiogenesis is vital for solid tumor growth, and its prevention is a proven strategy for the treatment of disease states such as cancer. The vascular endothelial growth factor (VEGF) pathway provides several opportunities by which small molecules can act as inhibitors of endothelial proliferation and migration. Critical to these processes is signaling through VEGFR-2 or the kinase insert domain receptor (KDR) upon stimulation by its ligand VEGF. Herein, we report the discovery of 2,3-dihydro-1,4-benzoxazines as inhibitors of intrinsic KDR activity (IC 50 < 0.1 microM) and human umbilical vein endothelial cell (HUVEC) proliferation with IC 50 < 0.1 microM. More specifically, compound 16 was identified as a potent (KDR: < 1 nM and HUVEC: 4 nM) and selective inhibitor that exhibited efficacy in angiogenic in vivo models. In addition, this series of molecules is typically well-absorbed orally, further demonstrating the 2,3-dihydro-1,4-benzoxazine moiety as a promising platform for generating kinase-based antiangiogenic therapeutic agents.


Journal of Medicinal Chemistry | 2014

Selective and potent morpholinone inhibitors of the MDM2-p53 protein-protein interaction.

Ana Z. Gonzalez; John Eksterowicz; Michael D. Bartberger; Hilary P. Beck; Jude Canon; Ada Chen; David Chow; Jason Duquette; Brian M. Fox; Jiasheng Fu; Xin Huang; Jonathan B. Houze; Lixia Jin; Yihong Li; Zhihong Li; Yun Ling; Mei-Chu Lo; Alexander M. Long; Lawrence R. McGee; Joel McIntosh; Dustin L. McMinn; Jonathan D. Oliner; Tao Osgood; Yosup Rew; Anne Y. Saiki; Paul Shaffer; Sarah Wortman; Peter Yakowec; Xuelei Yan; Qiuping Ye

We previously reported the discovery of AMG 232, a highly potent and selective piperidinone inhibitor of the MDM2-p53 interaction. Our continued search for potent and diverse analogues led to the discovery of novel morpholinone MDM2 inhibitors. This change to a morpholinone core has a significant impact on both potency and metabolic stability compared to the piperidinone series. Within this morpholinone series, AM-8735 emerged as an inhibitor with remarkable biochemical potency (HTRF IC50 = 0.4 nM) and cellular potency (SJSA-1 EdU IC50 = 25 nM), as well as pharmacokinetic properties. Compound 4 also shows excellent antitumor activity in the SJSA-1 osteosarcoma xenograft model with an ED50 of 41 mg/kg. Lead optimization toward the discovery of this inhibitor as well as key differences between the morpholinone and the piperidinone series will be described herein.

Collaboration


Dive into the Alexander M. Long's collaboration.

Researchain Logo
Decentralizing Knowledge