Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander M. Shneider is active.

Publication


Featured researches published by Alexander M. Shneider.


Influenza and Other Respiratory Viruses | 2007

Protection against mouse and avian influenza A strains via vaccination with a combination of conserved proteins NP, M1 and NS1

Oleg P. Zhirnov; Elena I. Isaeva; Tatyana E. Konakova; Galini Thoidis; Lyudmila M. Piskareva; Irina I. Akopova; Alex Kartashov; Anatoly D. Altstein; Petr Ilyinskii; Alexander M. Shneider

Background  Experimental data accumulated over more than a decade indicate that cross‐strain protection against influenza may be achieved by immunization with conserved influenza proteins. At the same time, the efficacy of immunization schemes designed along these lines and involving internal influenza proteins, mostly NP and M1, has not been sufficient.


Cell Cycle | 2007

Toxicity of Influenza A Virus Matrix Protein 2 for Mammalian Cells is Associated with its Intrinsic Proton-Channeling Activity

Petr Ilyinskii; Vladimir L. Gabai; Shamil R. Sunyaev; Galini Thoidis; Alexander M. Shneider

Molecules of influenza matrix protein 2 (M2) are organized in tetramers that constitute a well-conserved virion component and also form proton channels in the plasma membrane of infected cells. In this report we demonstrate that influenza M2 protein is cytopathic in vitro for mammalian cells. An M2 point-mutant (M2pm) protein was constructed that contained amino acid changes designed to block the proton channel via introduction of large hydrophobic residues. This mutant was significantly less toxic upon transient transfection in vitro than the wild-type M2 (M2wt). To assess the possible correlation between M2 cytotoxicity and its proton channel activity, we monitored changes in mitochondria membrane potential induced by M2wt and M2pm. M2wt rapidly decreased mitochondria membrane potential reflecting the transmembrane proton gradient, while M2pm was markedly less efficient. Thus, M2 is cytotoxic for mammalian cells, likely via its proton channel activity and may therefore contribute to influenza pathogenesis through this previously unknown mechanism.


Omics A Journal of Integrative Biology | 2009

Importance of mRNA Secondary Structural Elements for the Expression of Influenza Virus Genes

Petr Ilyinskii; Thorsten Schmidt; Dmitry Lukashev; Anatoli B. Meriin; Galini Thoidis; Dmitrij Frishman; Alexander M. Shneider

Development of novel vaccines and therapeutics often requires efficient expression of recombinant viral proteins. Here we show that mutations in essential functional regions of conserved influenza proteins NP and NS1, lead to reduced expression of these genes in vitro. According to in silico analysis, these mRNA regions possess distinct secondary structures sensitive to mutations. We identified a novel structural feature within a region in NS1 mRNA that encodes amino acids essential for NS1 function. Mutations altering this mRNA element lead to significantly reduced protein expression. Conversely, expression was not affected by mutations resulting in amino acid substitutions, when they were designed to preserve this secondary RNA structural element. Furthermore, altering this structure significantly reduced RNA transcription without affecting mRNA stability. Therefore, distinct internal secondary structures of viral mRNA may be important for viral gene expression. If such elements encode amino acids essential for the protein function, then early selection against mutations in this region will be beneficial for the virus. This might point at yet another mechanism of viral evolution, especially for RNA viruses. Finally, introducing mutations into viral genes while preserving their secondary RNA structure, suggests a new method for the generation of efficiently expressed recombinants of viral proteins.


Vaccine | 2008

Adjuvant potential of aggregate-forming polyglutamine domains.

Petr Ilyinskii; G. Thoidis; Michael Y. Sherman; Alexander M. Shneider

Aggregation may significantly affect the fate of a polypeptide, including its susceptibility to proteasome-dependent or autophagic degradation, its interaction with chaperones, etc. Since all these factors may affect the antigenicity of a polypeptide, we hypothesized that stimulating aggregation of an antigenic protein by its fusion to polyQ domain may enhance its antigenic potential. This hypothesis was tested with the weakly immunogenic model antigen GFP, which was fused to either long polyQ domain that triggers protein aggregation (103Q), or short polyQ domain that does not promote aggregation (25Q). Plasmids encoding control pGFP or soluble 25Q-GFP generated a very weak antibody response, while a significant increase in anti-GFP antibody titer was seen in groups immunized with DNA encoding aggregating 103Q-GFP. Similarly, fusion with 103Q strongly enhanced anti-GFP CTL activity, compared to fusion with 25Q. No apparent toxicity was observed after immunization with polyQ-GFP fusions. These data suggest that fusion of an antigen with expanded polyQ domains could have a significant adjuvant potential.


Vaccine | 2008

Prime-boost vaccination with a combination of proteosome-degradable and wild-type forms of two influenza proteins leads to augmented CTL response

Petr Ilyinskii; Anatoli B. Meriin; Vladimir L. Gabai; O.P. Zhirnov; G. Thoidis; Alexander M. Shneider

Targeting viral antigens for proteosomal degradation has previously been proposed as a means for immunogenicity augmentation. However, utilization of modified unstable antigens may be insufficient for potent T-cell cross-presentation by APCs, a mechanism that requires high levels of the antigenic protein. Therefore, we hypothesized that a recombinant vaccine utilizing a combination of proteosome-sensitive and proteosome-resistant versions of an antigen in a prime-boost regimen may provide the most efficient CTL response. To address this hypothesis, we utilized conserved proteosome-resistant influenza A virus proteins M1 and NS1. Unstable versions of these polypeptides were constructed by destroying their 3D structure via truncations or short insertions into predicted alpha-helical structures. These modified polypeptides were stabilized in the presence of the proteosome inhibitor MG132, strongly suggesting that they are degraded via a ubiquitin-proteosome pathway. Importantly, with both M1 and NS1antigens, homologous DNA vaccination with a mixture of unstable and proteosome-resistant wt forms of these proteins resulted in significantly higher CTL activity than vaccination with either wt or degradable forms. The most dramatic effect was seen with NS1, where homologous immunization with a mixture of these two forms was the only regimen that produced a notable elevation of CTL response, compared to vaccination with the wt NS1. Additionally, for M1 protein, heterologous vaccination utilizing the unstable form as prime and wild-type form as boost, demonstrated significant augmentation of the CTL response. These data indicate that combining proteosome-sensitive and proteosome-resistant forms of an antigen during vaccination is advantageous.


Nucleic Acids Research | 2013

RNAtips: analysis of temperature-induced changes of RNA secondary structure

Andrey Chursov; Sebastian J. Kopetzky; Gennady Bocharov; Dmitrij Frishman; Alexander M. Shneider

Although multiple biological phenomena are related to temperature (e.g. elevation of body temperature due to an illness, adaptation to environmental temperature conditions, biology of coldblooded versus warm-blooded organisms), the molecular mechanisms of these processes remain to be understood. Perturbations of secondary RNA structures may play an important role in an organism’s reaction to temperature change—in all organisms from viruses and bacteria to humans. Here, we present RNAtips (temperature-induced perturbation of structure) web server, which can be used to predict regions of RNA secondary structures that are likely to undergo structural alterations prompted by temperature change. The server can also be used to: (i) detect those regions in two homologous RNA sequences that undergo different structural perturbations due to temperature change and (ii) test whether these differences are specific to the particular nucleotide substitutions distinguishing the sequences. The RNAtips web server is freely accessible without any login requirement at http://rnatips.org.


International Reviews of Immunology | 2008

Development of a Vaccine Against Pandemic Influenza Viruses: Current Status and Perspectives

Petr Ilyinskii; Galini Thoidis; Alexander M. Shneider

The constant threat of a new influenza pandemic, which may be caused by a highly pathogenic avian influenza virus, necessitates the development of a vaccine capable of providing efficient, long-term, and cost-effective protection. Proven avenues for the development of vaccines against seasonal influenza as well as novel approaches have been explored over the past decade. Whereas significant insights are consistently being made, the generation of a highly efficient and cross-protective vaccine against the future pandemic influenza strain remains as the ultimate goal in the field. In this review, we re-examine these efforts and outline the scientific, political, and economic problems that befall this area of biotechnological research.


PLOS ONE | 2008

Inhibition of Influenza M2-Induced Cell Death Alleviates Its Negative Contribution to Vaccination Efficiency

Petr Ilyinskii; Alexandra S. Gambaryan; Anatoli B. Meriin; Vladimir L. Gabai; Alex Kartashov; Galini Thoidis; Alexander M. Shneider

The effectiveness of recombinant vaccines encoding full-length M2 protein of influenza virus or its ectodomain (M2e) have previously been tested in a number of models with varying degrees of success. Recently, we reported a strong cytotoxic effect exhibited by M2 on mammalian cells in vitro. Here we demonstrated a decrease in protection when M2 was added to a DNA vaccination regimen that included influenza NP. Furthermore, we have constructed several fusion proteins of conserved genes of influenza virus and tested their expression in vitro and protective potential in vivo. The four-partite NP-M1-M2-NS1 fusion antigen that has M2 sequence engineered in the middle part of the composite protein was shown to not be cytotoxic in vitro. A three-partite fusion protein (consisting of NP, M1 and NS1) was expressed much more efficiently than the four-partite protein. Both of these constructs provided statistically significant protection upon DNA vaccination, with construct NP-M1-M2-NS1 being the most effective. We conclude that incorporation of M2 into a vaccination regimen may be beneficial only when its apparent cytotoxicity-linked negative effects are neutralized. The possible significance of this data for influenza vaccination regimens and preparations is discussed.


Nucleic Acids Research | 2012

Sequence-structure relationships in yeast mRNAs.

Andrey Chursov; Mathias C. Walter; Thorsten Schmidt; Andrei Evgen'evich Mironov; Alexander M. Shneider; Dmitrij Frishman

It is generally accepted that functionally important RNA structure is more conserved than sequence due to compensatory mutations that may alter the sequence without disrupting the structure. For small RNA molecules sequence–structure relationships are relatively well understood. However, structural bioinformatics of mRNAs is still in its infancy due to a virtual absence of experimental data. This report presents the first quantitative assessment of sequence–structure divergence in the coding regions of mRNA molecules based on recently published transcriptome-wide experimental determination of their base paring patterns. Structural resemblance in paralogous mRNA pairs quickly drops as sequence identity decreases from 100% to 85–90%. Structures of mRNAs sharing sequence identity below roughly 85% are essentially uncorrelated. This outcome is in dramatic contrast to small functional non-coding RNAs where sequence and structure divergence are correlated at very low levels of sequence similarity. The fact that very similar mRNA sequences can have vastly different secondary structures may imply that the particular global shape of base paired elements in coding regions does not play a major role in modulating gene expression and translation efficiency. Apparently, the need to maintain stable three-dimensional structures of encoded proteins places a much higher evolutionary pressure on mRNA sequences than on their RNA structures.


Nucleic Acids Research | 2013

Conservation of mRNA secondary structures may filter out mutations in Escherichia coli evolution

Andrey Chursov; Dmitrij Frishman; Alexander M. Shneider

Recent reports indicate that mutations in viral genomes tend to preserve RNA secondary structure, and those mutations that disrupt secondary structural elements may reduce gene expression levels, thereby serving as a functional knockout. In this article, we explore the conservation of secondary structures of mRNA coding regions, a previously unknown factor in bacterial evolution, by comparing the structural consequences of mutations in essential and nonessential Escherichia coli genes accumulated over 40 000 generations in the course of the ‘long-term evolution experiment’. We monitored the extent to which mutations influence minimum free energy (MFE) values, assuming that a substantial change in MFE is indicative of structural perturbation. Our principal finding is that purifying selection tends to eliminate those mutations in essential genes that lead to greater changes of MFE values and, therefore, may be more disruptive for the corresponding mRNA secondary structures. This effect implies that synonymous mutations disrupting mRNA secondary structures may directly affect the fitness of the organism. These results demonstrate that the need to maintain intact mRNA structures imposes additional evolutionary constraints on bacterial genomes, which go beyond preservation of structure and function of the encoded proteins.

Collaboration


Dive into the Alexander M. Shneider's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrey Chursov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Victor Shifrin

Boston Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge