Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander M. Tsankov is active.

Publication


Featured researches published by Alexander M. Tsankov.


Cell | 2013

Transcriptional and epigenetic dynamics during specification of human embryonic stem cells.

Casey A. Gifford; Michael J. Ziller; Hongcang Gu; Cole Trapnell; Julie Donaghey; Alexander M. Tsankov; Alex K. Shalek; David R. Kelley; Alexander A. Shishkin; Robbyn Issner; Xiaolan Zhang; Michael J. Coyne; Jennifer L. Fostel; Laurie Holmes; Jim Meldrim; Mitchell Guttman; Charles B. Epstein; Hongkun Park; Oliver Kohlbacher; John L. Rinn; Andreas Gnirke; Eric S. Lander; Bradley E. Bernstein; Alexander Meissner

Differentiation of human embryonic stem cells (hESCs) provides a unique opportunity to study the regulatory mechanisms that facilitate cellular transitions in a human context. To that end, we performed comprehensive transcriptional and epigenetic profiling of populations derived through directed differentiation of hESCs representing each of the three embryonic germ layers. Integration of whole-genome bisulfite sequencing, chromatin immunoprecipitation sequencing, and RNA sequencing reveals unique events associated with specification toward each lineage. Lineage-specific dynamic alterations in DNA methylation and H3K4me1 are evident at putative distal regulatory elements that are frequently bound by pluripotency factors in the undifferentiated hESCs. In addition, we identified germ-layer-specific H3K27me3 enrichment at sites exhibiting high DNA methylation in the undifferentiated state. A better understanding of these initial specification events will facilitate identification of deficiencies in current approaches, leading to more faithful differentiation strategies as well as providing insights into the rewiring of human regulatory programs during cellular transitions.


Nature Genetics | 2015

Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells

Jing Liao; Rahul Karnik; Hongcang Gu; Michael J. Ziller; Kendell Clement; Alexander M. Tsankov; Veronika Akopian; Casey A. Gifford; Julie Donaghey; Christina Galonska; Ramona Pop; Deepak Reyon; Shengdar Q. Tsai; William Mallard; J. Keith Joung; John L. Rinn; Andreas Gnirke; Alexander Meissner

DNA methylation is a key epigenetic modification involved in regulating gene expression and maintaining genomic integrity. Here we inactivated all three catalytically active DNA methyltransferases (DNMTs) in human embryonic stem cells (ESCs) using CRISPR/Cas9 genome editing to further investigate the roles and genomic targets of these enzymes. Disruption of DNMT3A or DNMT3B individually as well as of both enzymes in tandem results in viable, pluripotent cell lines with distinct effects on the DNA methylation landscape, as assessed by whole-genome bisulfite sequencing. Surprisingly, in contrast to findings in mouse, deletion of DNMT1 resulted in rapid cell death in human ESCs. To overcome this immediate lethality, we generated a doxycycline-responsive tTA-DNMT1* rescue line and readily obtained homozygous DNMT1-mutant lines. However, doxycycline-mediated repression of exogenous DNMT1* initiates rapid, global loss of DNA methylation, followed by extensive cell death. Our data provide a comprehensive characterization of DNMT-mutant ESCs, including single-base genome-wide maps of the targets of these enzymes.


Nature Biotechnology | 2015

A comparison of non-integrating reprogramming methods

Thorsten M. Schlaeger; Laurence Daheron; Thomas R Brickler; Samuel Entwisle; Karrie Chan; Amelia Cianci; Alexander L. DeVine; Andrew Ettenger; Kelly Fitzgerald; Michelle Godfrey; Dipti Gupta; Jade McPherson; Prerana Malwadkar; Manav Gupta; Blair Bell; Akiko Doi; Namyoung Jung; Xin Li; Maureen M. Lynes; Emily Brookes; Anne Cherry; Didem Demirbas; Alexander M. Tsankov; Leonard I. Zon; Lee L. Rubin; Andrew P. Feinberg; Alexander Meissner; Chad A. Cowan; George Q. Daley

Human induced pluripotent stem cells (hiPSCs) are useful in disease modeling and drug discovery, and they promise to provide a new generation of cell-based therapeutics. To date there has been no systematic evaluation of the most widely used techniques for generating integration-free hiPSCs. Here we compare Sendai-viral (SeV), episomal (Epi) and mRNA transfection mRNA methods using a number of criteria. All methods generated high-quality hiPSCs, but significant differences existed in aneuploidy rates, reprogramming efficiency, reliability and workload. We discuss the advantages and shortcomings of each approach, and present and review the results of a survey of a large number of human reprogramming laboratories on their independent experiences and preferences. Our analysis provides a valuable resource to inform the use of specific reprogramming methods for different laboratories and different applications, including clinical translation.


PLOS Biology | 2010

The Role of Nucleosome Positioning in the Evolution of Gene Regulation

Alexander M. Tsankov; Dawn Anne Thompson; Amanda Socha; Aviv Regev; Oliver J. Rando

A comparative genomics study maps nucleosomes across the entire genomes of 12 fungal species, identifying multiple distinct mechanisms linking changes in chromatin architecture to evolution of gene regulation.


Nature | 2015

Transcription factor binding dynamics during human ES cell differentiation

Alexander M. Tsankov; Hongcang Gu; Veronika Akopian; Michael J. Ziller; Julie Donaghey; Ido Amit; Andreas Gnirke; Alexander Meissner

Pluripotent stem cells provide a powerful system to dissect the underlying molecular dynamics that regulate cell fate changes during mammalian development. Here we report the integrative analysis of genome-wide binding data for 38 transcription factors with extensive epigenome and transcriptional data across the differentiation of human embryonic stem cells to the three germ layers. We describe core regulatory dynamics and show the lineage-specific behaviour of selected factors. In addition to the orchestrated remodelling of the chromatin landscape, we find that the binding of several transcription factors is strongly associated with specific loss of DNA methylation in one germ layer, and in many cases a reciprocal gain in the other layers. Taken together, our work shows context-dependent rewiring of transcription factor binding, downstream signalling effectors, and the epigenome during human embryonic stem cell differentiation.


Nature Biotechnology | 2015

A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs.

Jiho Choi; Soohyun Lee; William Mallard; Kendell Clement; Guidantonio Malagoli Tagliazucchi; Hotae Lim; In Young Choi; Francesco Ferrari; Alexander M. Tsankov; Ramona Pop; Gabsang Lee; John L. Rinn; Alexander Meissner; Peter J. Park

The equivalence of human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) remains controversial. Here we use genetically matched hESC and hiPSC lines to assess the contribution of cellular origin (hESC vs. hiPSC), the Sendai virus (SeV) reprogramming method and genetic background to transcriptional and DNA methylation patterns while controlling for cell line clonality and sex. We find that transcriptional and epigenetic variation originating from genetic background dominates over variation due to cellular origin or SeV infection. Moreover, the 49 differentially expressed genes we detect between genetically matched hESCs and hiPSCs neither predict functional outcome nor distinguish an independently derived, larger set of unmatched hESC and hiPSC lines. We conclude that hESCs and hiPSCs are molecularly and functionally equivalent and cannot be distinguished by a consistent gene expression signature. Our data further imply that genetic background variation is a major confounding factor for transcriptional and epigenetic comparisons of pluripotent cell lines, explaining some of the previously observed differences between genetically unmatched hESCs and hiPSCs.


Nature | 2015

Dissecting neural differentiation regulatory networks through epigenetic footprinting

Michael J. Ziller; Reuven Edri; Yakey Yaffe; Julie Donaghey; Ramona Pop; William Mallard; Robbyn Issner; Casey A. Gifford; Alon Goren; Jeffrey Xing; Hongcang Gu; Davide Cacchiarelli; Alexander M. Tsankov; John L. Rinn; Tarjei S. Mikkelsen; Oliver Kohlbacher; Andreas Gnirke; Bradley E. Bernstein; Yechiel Elkabetz; Alexander Meissner

Models derived from human pluripotent stem cells that accurately recapitulate neural development in vitro and allow for the generation of specific neuronal subtypes are of major interest to the stem cell and biomedical community. Notch signalling, particularly through the Notch effector HES5, is a major pathway critical for the onset and maintenance of neural progenitor cells in the embryonic and adult nervous system. Here we report the transcriptional and epigenomic analysis of six consecutive neural progenitor cell stages derived from a HES5::eGFP reporter human embryonic stem cell line. Using this system, we aimed to model cell-fate decisions including specification, expansion and patterning during the ontogeny of cortical neural stem and progenitor cells. In order to dissect regulatory mechanisms that orchestrate the stage-specific differentiation process, we developed a computational framework to infer key regulators of each cell-state transition based on the progressive remodelling of the epigenetic landscape and then validated these through a pooled short hairpin RNA screen. We were also able to refine our previous observations on epigenetic priming at transcription factor binding sites and suggest here that they are mediated by combinations of core and stage-specific factors. Taken together, we demonstrate the utility of our system and outline a general framework, not limited to the context of the neural lineage, to dissect regulatory circuits of differentiation.


Nature Methods | 2015

Automated, high-throughput derivation, characterization and differentiation of induced pluripotent stem cells

Daniel Paull; Ana Sevilla; Hongyan Zhou; Aana Kim Hahn; Hesed Kim; Christopher Napolitano; Alexander M. Tsankov; Linshan Shang; Katie Krumholz; Premlatha Jagadeesan; Chris Woodard; Bruce Sun; Thierry Vilboux; Matthew Zimmer; Eliana Forero; Dorota N. Moroziewicz; Hector Martinez; May Christine V. Malicdan; Keren A. Weiss; Lauren B Vensand; Carmen R Dusenberry; Hannah Polus; Karla Therese L Sy; David J. Kahler; William A. Gahl; Susan Solomon; Stephen Chang; Alexander Meissner; Kevin Eggan; Scott Noggle

Induced pluripotent stem cells (iPSCs) are an essential tool for modeling how causal genetic variants impact cellular function in disease, as well as an emerging source of tissue for regenerative medicine. The preparation of somatic cells, their reprogramming and the subsequent verification of iPSC pluripotency are laborious, manual processes limiting the scale and reproducibility of this technology. Here we describe a modular, robotic platform for iPSC reprogramming enabling automated, high-throughput conversion of skin biopsies into iPSCs and differentiated cells with minimal manual intervention. We demonstrate that automated reprogramming and the pooled selection of polyclonal pluripotent cells results in high-quality, stable iPSCs. These lines display less line-to-line variation than either manually produced lines or lines produced through automation followed by single-colony subcloning. The robotic platform we describe will enable the application of iPSCs to population-scale biomedical problems including the study of complex genetic diseases and the development of personalized medicines.


Genome Biology | 2012

Genome-wide identification and characterization of replication origins by deep sequencing

Jia Xu; Yoshimi Yanagisawa; Alexander M. Tsankov; Christopher Hart; Keita Aoki; Naveen Kommajosyula; Kathleen E. Steinmann; James Bochicchio; Carsten Russ; Aviv Regev; Oliver J. Rando; Chad Nusbaum; Hironori Niki; Patrice M. Milos; Zhiping Weng; Nicholas Rhind

BackgroundDNA replication initiates at distinct origins in eukaryotic genomes, but the genomic features that define these sites are not well understood.ResultsWe have taken a combined experimental and bioinformatic approach to identify and characterize origins of replication in three distantly related fission yeasts: Schizosaccharomyces pombe, Schizosaccharomyces octosporus and Schizosaccharomyces japonicus. Using single-molecule deep sequencing to construct amplification-free high-resolution replication profiles, we located origins and identified sequence motifs that predict origin function. We then mapped nucleosome occupancy by deep sequencing of mononucleosomal DNA from the corresponding species, finding that origins tend to occupy nucleosome-depleted regions.ConclusionsThe sequences that specify origins are evolutionarily plastic, with low complexity nucleosome-excluding sequences functioning in S. pombe and S. octosporus, and binding sites for trans-acting nucleosome-excluding proteins functioning in S. japonicus. Furthermore, chromosome-scale variation in replication timing is conserved independently of origin location and via a mechanism distinct from known heterochromatic effects on origin function. These results are consistent with a model in which origins are simply the nucleosome-depleted regions of the genome with the highest affinity for the origin recognition complex. This approach provides a general strategy for understanding the mechanisms that define DNA replication origins in eukaryotes.


Genome Research | 2011

Evolutionary divergence of intrinsic and trans-regulated nucleosome positioning sequences reveals plastic rules for chromatin organization

Alexander M. Tsankov; Yoshimi Yanagisawa; Nicholas Rhind; Aviv Regev; Oliver J. Rando

The packaging of eukaryotic genomes into nuclesomes plays critical roles in chromatin organization and gene regulation. Studies in Saccharomyces cerevisiae indicate that nucleosome occupancy is partially encoded by intrinsic antinucleosomal DNA sequences, such as poly(A) sequences, as well as by binding sites for trans-acting factors that can evict nucleosomes, such as Reb1 and the Rsc3/30 complex. Here, we use genome-wide nucleosome occupancy maps in 13 Ascomycota fungi to discover large-scale evolutionary reprogramming of both intrinsic and trans determinants of chromatin structure. We find that poly(G)s act as intrinsic antinucleosomal sequences, comparable to the known function of poly(A)s, but that the abundance of poly(G)s has diverged greatly between species, obscuring their antinucleosomal effect in low-poly(G) species such as S. cerevisiae. We also develop a computational method that uses nucleosome occupancy maps for discovering trans-acting general regulatory factor (GRF) binding sites. Our approach reveals that the specific sequences bound by GRFs have diverged substantially across evolution, corresponding to a number of major evolutionary transitions in the repertoire of GRFs. We experimentally validate a proposed evolutionary transition from Cbf1 as a major GRF in pre-whole-genome duplication (WGD) yeasts to Reb1 in post-WGD yeasts. We further show that the mating type switch-activating protein Sap1 is a GRF in S. pombe, demonstrating the general applicability of our approach. Our results reveal that the underlying mechanisms that determine in vivo chromatin organization have diverged and that comparative genomics can help discover new determinants of chromatin organization.

Collaboration


Dive into the Alexander M. Tsankov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramona Pop

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oliver J. Rando

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Aviv Regev

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge