Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander N. Freiberg is active.

Publication


Featured researches published by Alexander N. Freiberg.


PLOS Pathogens | 2008

Phosphoinositide-3 Kinase-Akt Pathway Controls Cellular Entry of Ebola Virus

Mohammad Saeed; Andrey A. Kolokoltsov; Alexander N. Freiberg; Robert A. Davey

The phosphoinositide-3 kinase (PI3K) pathway regulates diverse cellular activities related to cell growth, migration, survival, and vesicular trafficking. It is known that Ebola virus requires endocytosis to establish an infection. However, the cellular signals that mediate this uptake were unknown for Ebola virus as well as many other viruses. Here, the involvement of PI3K in Ebola virus entry was studied. A novel and critical role of the PI3K signaling pathway was demonstrated in cell entry of Zaire Ebola virus (ZEBOV). Inhibitors of PI3K and Akt significantly reduced infection by ZEBOV at an early step during the replication cycle. Furthermore, phosphorylation of Akt-1 was induced shortly after exposure of cells to radiation-inactivated ZEBOV, indicating that the virus actively induces the PI3K pathway and that replication was not required for this induction. Subsequent use of pseudotyped Ebola virus and/or Ebola virus-like particles, in a novel virus entry assay, provided evidence that activity of PI3K/Akt is required at the virus entry step. Class 1A PI3Ks appear to play a predominant role in regulating ZEBOV entry, and Rac1 is a key downstream effector in this regulatory cascade. Confocal imaging of fluorescently labeled ZEBOV indicated that inhibition of PI3K, Akt, or Rac1 disrupted normal uptake of virus particles into cells and resulted in aberrant accumulation of virus into a cytosolic compartment that was non-permissive for membrane fusion. We conclude that PI3K-mediated signaling plays an important role in regulating vesicular trafficking of ZEBOV necessary for cell entry. Disruption of this signaling leads to inappropriate trafficking within the cell and a block in steps leading to membrane fusion. These findings extend our current understanding of Ebola virus entry mechanism and may help in devising useful new strategies for treatment of Ebola virus infection.


PLOS Pathogens | 2010

Ubiquitin-regulated nuclear-cytoplasmic trafficking of the Nipah virus matrix protein is important for viral budding.

Yao E. Wang; Arnold Park; Michael P. Lake; Mickey Pentecost; Betsabe Torres; Tatyana E. Yun; Mike C. Wolf; Alexander N. Freiberg; Benhur Lee

Paramyxoviruses are known to replicate in the cytoplasm and bud from the plasma membrane. Matrix is the major structural protein in paramyxoviruses that mediates viral assembly and budding. Curiously, the matrix proteins of a few paramyxoviruses have been found in the nucleus, although the biological function associated with this nuclear localization remains obscure. We report here that the nuclear-cytoplasmic trafficking of the Nipah virus matrix (NiV-M) protein and associated post-translational modification play a critical role in matrix-mediated virus budding. Nipah virus (NiV) is a highly pathogenic emerging paramyxovirus that causes fatal encephalitis in humans, and is classified as a Biosafety Level 4 (BSL4) pathogen. During live NiV infection, NiV-M was first detected in the nucleus at early stages of infection before subsequent localization to the cytoplasm and the plasma membrane. Mutations in the putative bipartite nuclear localization signal (NLS) and the leucine-rich nuclear export signal (NES) found in NiV-M impaired its nuclear-cytoplasmic trafficking and also abolished NiV-M budding. A highly conserved lysine residue in the NLS served dual functions: its positive charge was important for mediating nuclear import, and it was also a potential site for monoubiquitination which regulates nuclear export of the protein. Concordantly, overexpression of ubiquitin enhanced NiV-M budding whereas depletion of free ubiquitin in the cell (via proteasome inhibitors) resulted in nuclear retention of NiV-M and blocked viral budding. Live Nipah virus budding was exquisitely sensitive to proteasome inhibitors: bortezomib, an FDA-approved proteasome inhibitor for treating multiple myeloma, reduced viral titers with an IC50 of 2.7 nM, which is 100-fold less than the peak plasma concentration that can be achieved in humans. This opens up the possibility of using an “off-the-shelf” therapeutic against acute NiV infection.


Journal of Virology | 2008

Three-Dimensional Organization of Rift Valley Fever Virus Revealed by Cryoelectron Tomography

Alexander N. Freiberg; Michael B. Sherman; Marc C. Morais; Stanley J. Watowich

ABSTRACT Rift Valley fever virus (RVFV) is a member of the Bunyaviridae virus family (genus Phlebovirus) and is considered to be one of the most important pathogens in Africa, causing viral zoonoses in livestock and humans. Here, we report the characterization of the three-dimensional structural organization of RVFV vaccine strain MP-12 by cryoelectron tomography. Vitrified-hydrated virions were found to be spherical, with an average diameter of 100 nm. The virus glycoproteins formed cylindrical hollow spikes that clustered into distinct capsomeres. In contrast to previous assertions that RVFV is pleomorphic, the structure of RVFV MP-12 was found to be highly ordered. The three-dimensional map was resolved to a resolution of 6.1 nm, and capsomeres were observed to be arranged on the virus surface in an icosahedral lattice with clear T=12 quasisymmetry. All icosahedral symmetry axes were visible in self-rotation functions calculated using the Fourier transform of the RVFV MP-12 tomogram. To the best of our knowledge, a triangulation number of 12 had previously been reported only for Uukuniemi virus, a bunyavirus also within the Phlebovirus genus. The results presented in this study demonstrate that RVFV MP-12 possesses T=12 icosahedral symmetry and suggest that other members of the Phlebovirus genus, as well as of the Bunyaviridae family, may adopt icosahedral symmetry. Knowledge of the virus architecture may provide a structural template to develop vaccines and diagnostics, since no effective anti-RVFV treatments are available for human use.


Virology | 2010

A Replication-incompetent Rift Valley Fever Vaccine: Chimeric Virus-like Particles Protect Mice and Rats Against Lethal Challenge

Robert B. Mandell; Ramesh Koukuntla; Laura J.K. Mogler; Andrea K. Carzoli; Alexander N. Freiberg; Brian K. Martin; William Staplin; Nicholas N. Vahanian; Charles J. Link; Ramon Flick

Abstract Virus-like particles (VLPs) present viral antigens in a native conformation and are effectively recognized by the immune system and therefore are considered as suitable and safe vaccine candidates against many viral diseases. Here we demonstrate that chimeric VLPs containing Rift Valley fever virus (RVFV) glycoproteins GN and GC, nucleoprotein N and the gag protein of Moloney murine leukemia virus represent an effective vaccine candidate against Rift Valley fever, a deadly disease in humans and livestock. Long-lasting humoral and cellular immune responses are demonstrated in a mouse model by the analysis of neutralizing antibody titers and cytokine secretion profiles. Vaccine efficacy studies were performed in mouse and rat lethal challenge models resulting in high protection rates. Taken together, these results demonstrate that replication-incompetent chimeric RVF VLPs are an efficient RVFV vaccine candidate.


Antimicrobial Agents and Chemotherapy | 2011

T-705 (Favipiravir) Inhibition of Arenavirus Replication in Cell Culture

Michelle Mendenhall; Andrew Russell; Terry L. Juelich; Emily L. Messina; Donald F. Smee; Alexander N. Freiberg; Yousuke Furuta; Juan Carlos de la Torre; Jack H. Nunberg; Brian B. Gowen

ABSTRACT A number of New World arenaviruses (Junín [JUNV], Machupo [MACV], and Guanarito [GTOV] viruses) can cause human disease ranging from mild febrile illness to a severe and often fatal hemorrhagic fever syndrome. These highly pathogenic viruses and the Old World Lassa fever virus pose a significant threat to public health and national security. The only licensed antiviral agent with activity against these viruses, ribavirin, has had mixed success in treating severe arenaviral disease and is associated with significant toxicities. A novel pyrazine derivative currently in clinical trials for the treatment of influenza virus infections, T-705 (favipiravir), has demonstrated broad-spectrum activity against a number of RNA viruses, including arenaviruses. T-705 has also been shown to be effective against Pichinde arenavirus infection in a hamster model. Here, we demonstrate the robust antiviral activity of T-705 against authentic highly pathogenic arenaviruses in cell culture. We show that T-705 disrupts an early or intermediate stage in viral replication, distinct from absorption or release, and that its antiviral activity in cell culture is reversed by the addition of purine bases and nucleosides, but not with pyrimidines. Specific inhibition of viral replication/transcription by T-705 was demonstrated using a lymphocytic choriomeningitis arenavirus replicon system. Our findings indicate that T-705 acts to inhibit arenavirus replication/transcription and may directly target the viral RNA-dependent RNA polymerase.


Journal of Virology | 2011

Inactivated or Live-Attenuated Bivalent Vaccines that Confer Protection against Rabies and Ebola Viruses

Joseph E. Blaney; Christoph Wirblich; Amy B. Papaneri; Reed F. Johnson; Carey Myers; Terry L. Juelich; Alexander N. Freiberg; John G. Bernbaum; Peter B. Jahrling; Jason Paragas; Matthias J. Schnell

ABSTRACT The search for a safe and efficacious vaccine for Ebola virus continues, as no current vaccine candidate is nearing licensure. We have developed (i) replication-competent, (ii) replication-deficient, and (iii) chemically inactivated rabies virus (RABV) vaccines expressing Zaire Ebola virus (ZEBOV) glycoprotein (GP) by a reverse genetics system based on the SAD B19 RABV wildlife vaccine. ZEBOV GP is efficiently expressed by these vaccine candidates and is incorporated into virions. The vaccine candidates were avirulent after inoculation of adult mice, and viruses with a deletion in the RABV glycoprotein had greatly reduced neurovirulence after intracerebral inoculation in suckling mice. Immunization with live or inactivated RABV vaccines expressing ZEBOV GP induced humoral immunity against each virus and conferred protection from both lethal RABV and EBOV challenge in mice. The bivalent RABV/ZEBOV vaccines described here have several distinct advantages that may speed the development of inactivated vaccines for use in humans and potentially live or inactivated vaccines for use in nonhuman primates at risk of EBOV infection in endemic areas.


Structure | 2008

An Intersubunit Active Site between Supercoiled Parallel β Helices in the Trimeric Tailspike Endorhamnosidase of Shigella flexneri Phage Sf6

Jürgen J. Müller; Stefanie Barbirz; Karolin Heinle; Alexander N. Freiberg; Robert Seckler; Udo Heinemann

Sf6 belongs to the Podoviridae family of temperate bacteriophages that infect gram-negative bacteria by insertion of their double-stranded DNA. They attach to their hosts specifically via their tailspike proteins. The 1.25 A crystal structure of Shigella phage Sf6 tailspike protein (Sf6 TSP) reveals a conserved architecture with a central, right-handed beta helix. In the trimer of Sf6 TSP, the parallel beta helices form a left-handed, coiled-beta coil with a pitch of 340 A. The C-terminal domain consists of a beta sandwich reminiscent of viral capsid proteins. Further crystallographic and biochemical analyses show a Shigella cell wall O-antigen fragment to bind to an endorhamnosidase active site located between two beta-helix subunits each anchoring one catalytic carboxylate. The functionally and structurally related bacteriophage, P22 TSP, lacks sequence identity with Sf6 TSP and has its active sites on single subunits. Sf6 TSP may serve as an example for the evolution of different host specificities on a similar general architecture.


Nature Communications | 2014

Evidence for henipavirus spillover into human populations in Africa

Olivier Pernet; Bradley S. Schneider; Shannon M. Beaty; Matthew LeBreton; Tatyana E. Yun; Arnold Park; Trevor T. Zachariah; Thomas A. Bowden; Peta L. Hitchens; Christina M. Ramirez; Peter Daszak; Jonna A. K. Mazet; Alexander N. Freiberg; Nathan D. Wolfe; Benhur Lee

Zoonotic transmission of lethal henipaviruses (HNVs) from their natural fruit bat reservoirs to humans has only been reported in Australia and South/Southeast Asia. However, a recent study discovered numerous HNV clades in African bat samples. To determine the potential for HNV spillover events among humans in Africa, here we examine well-curated sets of bat (Eidolon helvum, n=44) and human (n=497) serum samples from Cameroon for Nipah virus (NiV) cross-neutralizing antibodies (NiV-X-Nabs). Using a vesicular stomatitis virus (VSV)-based pseudoparticle seroneutralization assay, we detect NiV-X-Nabs in 48% and 3–4% of the bat and human samples, respectively. Seropositive human samples are found almost exclusively in individuals who reported butchering bats for bushmeat. Seropositive human sera also neutralize Hendra virus and Gh-M74a (an African HNV) pseudoparticles, as well as live NiV. Butchering bat meat and living in areas undergoing deforestation are the most significant risk factors associated with seropositivity. Evidence for HNV spillover events warrants increased surveillance efforts.


Archives of Virology | 2013

Virus nomenclature below the species level: A standardized nomenclature for filovirus strains and variants rescued from cDNA

Jens H. Kuhn; Yiming Bao; Sina Bavari; Stephan Becker; Steven B. Bradfute; Kristina Brauburger; J. Rodney Brister; Alexander Bukreyev; Yíngyún Caì; Kartik Chandran; Robert A. Davey; Olga Dolnik; John M. Dye; Sven Enterlein; Jean-Paul Gonzalez; Pierre Formenty; Alexander N. Freiberg; Lisa E. Hensley; Thomas Hoenen; Anna N. Honko; Georgy M. Ignatyev; Peter B. Jahrling; Karl M. Johnson; Hans-Dieter Klenk; Gary P. Kobinger; Matthew G. Lackemeyer; Eric M. Leroy; Mark S. Lever; Elke Mühlberger; Sergewy V. Netesov

Specific alterations (mutations, deletions, insertions) of virus genomes are crucial for the functional characterization of their regulatory elements and their expression products, as well as a prerequisite for the creation of attenuated viruses that could serve as vaccine candidates. Virus genome tailoring can be performed either by using traditionally cloned genomes as starting materials, followed by site-directed mutagenesis, or by de novo synthesis of modified virus genomes or parts thereof. A systematic nomenclature for such recombinant viruses is necessary to set them apart from wild-type and laboratory-adapted viruses, and to improve communication and collaborations among researchers who may want to use recombinant viruses or create novel viruses based on them. A large group of filovirus experts has recently proposed nomenclatures for natural and laboratory animal-adapted filoviruses that aim to simplify the retrieval of sequence data from electronic databases. Here, this work is extended to include nomenclature for filoviruses obtained in the laboratory via reverse genetics systems. The previously developed template for natural filovirus genetic variant naming, (/)///-, is retained, but we propose to adapt the type of information added to each field for cDNA clone-derived filoviruses. For instance, the full-length designation of an Ebola virus Kikwit variant rescued from a plasmid developed at the US Centers for Disease Control and Prevention could be akin to “Ebola virus H.sapiens-rec/COD/1995/Kikwit-abc1” (with the suffix “rec” identifying the recombinant nature of the virus and “abc1” being a placeholder for any meaningful isolate designator). Such a full-length designation should be used in databases and the methods section of publications. Shortened designations (such as “EBOV H.sap/COD/95/Kik-abc1”) and abbreviations (such as “EBOV/Kik-abc1”) could be used in the remainder of the text, depending on how critical it is to convey information contained in the full-length name. “EBOV” would suffice if only one EBOV strain/variant/isolate is addressed.


Journal of Virology | 2013

The Lack of Maturation of Ebola Virus-Infected Dendritic Cells Results from the Cooperative Effect of at Least Two Viral Domains

Ndongala Michel Lubaki; Philipp A. Ilinykh; Colette Pietzsch; Bersabeh Tigabu; Alexander N. Freiberg; Richard A. Koup; Alexander Bukreyev

ABSTRACT Ebola virus (EBOV) infections are characterized by deficient T lymphocyte responses, T lymphocyte apoptosis, and lymphopenia in the absence of direct infection of T lymphocytes. In contrast, dendritic cells (DC) are infected but fail to mature appropriately, thereby impairing the T cell response. We investigated the contributions of EBOV proteins in modulating DC maturation by generating recombinant viruses expressing enhanced green fluorescent protein and carrying mutations affecting several potentially immunomodulating domains. They included envelope glycoprotein (GP) domains, as well as innate response antagonist domains (IRADs) previously identified in the VP24 and VP35 proteins. GP expressed by an unrelated vector, but not the wild-type EBOV, was found to strongly induce DC maturation, and infections with recombinant EBOV carrying mutations disabling GP functional domains did not restore DC maturation. In contrast, each of the viruses carrying mutations disabling any IRAD in VP35 induced a dramatic upregulation of DC maturation markers. This was dependent on infection, but not interaction with GP. Disabling of IRADs also resulted in up to a several hundredfold increase in secretion of cytokines and chemokines. Furthermore, these mutations induced formation of homotypic DC clusters, which represent close correlates of their maturation and presumably facilitate transfer of antigen from migratory DC to lymph node DC. Thus, an individual IRAD is insufficient to suppress DC maturation; rather, the suppression of DC maturation and the “immune paralysis” observed during EBOV infections results from a cooperative effect of two or more individual IRADs.

Collaboration


Dive into the Alexander N. Freiberg's collaboration.

Top Co-Authors

Avatar

Terry L. Juelich

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Benhur Lee

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Jennifer K. Smith

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Lihong Zhang

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Tetsuro Ikegami

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Arnold Park

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Nandadeva Lokugamage

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Terence E. Hill

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Alexander Bukreyev

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Bersabeh Tigabu

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge