Alexander Opitz
Nathan Kline Institute for Psychiatric Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander Opitz.
Nature Neuroscience | 2014
Wynn Legon; Tomokazu F. Sato; Alexander Opitz; Jerel K Mueller; Aaron Barbour; Amanda Williams; William J. Tyler
Improved methods of noninvasively modulating human brain function are needed. Here we probed the influence of transcranial focused ultrasound (tFUS) targeted to the human primary somatosensory cortex (S1) on sensory-evoked brain activity and sensory discrimination abilities. The lateral and axial spatial resolution of the tFUS beam implemented were 4.9 mm and 18 mm, respectively. Electroencephalographic recordings showed that tFUS significantly attenuated the amplitudes of somatosensory evoked potentials elicited by median nerve stimulation. We also found that tFUS significantly modulated the spectral content of sensory-evoked brain oscillations. The changes produced by tFUS on sensory-evoked brain activity were abolished when the acoustic beam was focused 1 cm anterior or posterior to S1. Behavioral investigations showed that tFUS targeted to S1 enhanced performance on sensory discrimination tasks without affecting task attention or response bias. We conclude that tFUS can be used to focally modulate human cortical function.
NeuroImage | 2011
Axel Thielscher; Alexander Opitz; Mirko Windhoff
The spatial extent of the effects of transcranial magnetic stimulation (TMS) on neural tissue is only coarsely understood. One key problem is the realistic calculation of the electric field induced in the brain, which proves difficult due to the complex gyral folding pattern that results in an inhomogeneous conductivity distribution within the skull. We used the finite element method (FEM) together with a high-resolution volume mesh of the human head to better characterize the field induced in cortical gray matter (GM). The volume mesh was constructed from T1-weighted structural magnetic resonance images to allow for an anatomically accurate modeling of the gyrification pattern. Five tissue types were taken into account, corresponding to skin, skull, cerebrospinal fluid (CSF) including the ventricles as well as cortical gray and white matter. We characterized the effect of the current direction on the electric field distribution in GM. Importantly, the field strength in GM was increased by up to 51% when the induced currents were perpendicular to the local gyrus orientation. This effect was mainly restricted to the gyral crowns and lips, but did not extend into the sulcal walls. As a result, the focality of the fields induced in GM was increased. This enhancement effect might in part underlie the dependency of stimulation thresholds on coil orientation, as commonly observed in TMS motor cortex studies. In contrast to the clear-cut effects of the gyrification pattern on the induced field strength, current directions were predominantly influenced by the CSF-skull boundary.
Human Brain Mapping | 2013
Mirko Windhoff; Alexander Opitz; Axel Thielscher
The need for realistic electric field calculations in human noninvasive brain stimulation is undisputed to more accurately determine the affected brain areas. However, using numerical techniques such as the finite element method (FEM) is methodologically complex, starting with the creation of accurate head models to the integration of the models in the numerical calculations. These problems substantially limit a more widespread application of numerical methods in brain stimulation up to now. We introduce an optimized processing pipeline allowing for the automatic generation of individualized high‐quality head models from magnetic resonance images and their usage in subsequent field calculations based on the FEM. The pipeline starts by extracting the borders between skin, skull, cerebrospinal fluid, gray and white matter. The quality of the resulting surfaces is subsequently improved, allowing for the creation of tetrahedral volume head meshes that can finally be used in the numerical calculations. The pipeline integrates and extends established (and mainly free) software for neuroimaging, computer graphics, and FEM calculations into one easy‐to‐use solution. We demonstrate the successful usage of the pipeline in six subjects, including field calculations for transcranial magnetic stimulation and transcranial direct current stimulation. The quality of the head volume meshes is validated both in terms of capturing the underlying anatomy and of the well‐shapedness of the mesh elements. The latter is crucial to guarantee the numerical robustness of the FEM calculations. The pipeline will be released as open‐source, allowing for the first time to perform realistic field calculations at an acceptable methodological complexity and moderate costs. Hum Brain Mapp, 2013.
NeuroImage | 2011
Alexander Opitz; Mirko Windhoff; Robin M. Heidemann; Robert Turner; Axel Thielscher
In transcranial magnetic stimulation (TMS), knowledge of the distribution of the induced electric field is fundamental for a better understanding of the position and extent of the stimulated brain region. However, the different tissue types and the varying fibre orientation in the brain tissue result in an inhomogeneous and anisotropic conductivity distribution and distort the electric field in a non-trivial way. Here, the field induced by a figure-8 coil is characterized in detail using finite element calculations and a geometrically accurate model of an individual head combined with high-resolution diffusion-weighted imaging for conductivity mapping. It is demonstrated that the field strength is significantly enhanced when the currents run approximately perpendicular to the local gyral orientation. Importantly, the spatial distribution of this effect differs distinctly between gray matter (GM) and white matter (WM): While the field in GM is selectively enhanced at the gyral crowns and lips, high field strengths can still occur rather deep in WM. Taking the anisotropy of brain tissue into account tends to further boost this effect in WM, but not in GM. Spatial variations in the WM anisotropy affect the local field strength in a systematic way and result in localized increases of up to 40% (on average ~7% for coil orientations perpendicular to the underlying gyri). We suggest that these effects might create hot spots in WM that might contribute to the excitation of WM structures by TMS. However, our results also demonstrate the necessity of using realistic nerve models in the future to allow for more definitive conclusions.
NeuroImage | 2013
Alexander Opitz; Wynn Legon; Abby Rowlands; Warren K. Bickel; Walter Paulus; William J. Tyler
Recent evidence indicates subject-specific gyral folding patterns and white matter anisotropy uniquely shape electric fields generated by TMS. Current methods for predicting the brain regions influenced by TMS involve projecting the TMS coil position or center of gravity onto realistic head models derived from structural and functional imaging data. Similarly, spherical models have been used to estimate electric field distributions generated by TMS pulses delivered from a particular coil location and position. In the present paper we inspect differences between electric field computations estimated using the finite element method (FEM) and projection-based approaches described above. We then more specifically examined an approach for estimating cortical excitation volumes based on individualistic FEM simulations of electric fields. We evaluated this approach by performing neurophysiological recordings during MR-navigated motormapping experiments. We recorded motor evoked potentials (MEPs) in response to single pulse TMS using two different coil orientations (45° and 90° to midline) at 25 different locations (5×5 grid, 1cm spacing) centered on the hotspot of the right first dorsal interosseous (FDI) muscle in left motor cortex. We observed that motor excitability maps varied within and between subjects as a function of TMS coil position and orientation. For each coil position and orientation tested, simulations of the TMS-induced electric field were computed using individualistic FEM models and compared to MEP amplitudes obtained during our motormapping experiments. We found FEM simulations of electric field strength, which take into account subject-specific gyral geometry and tissue conductivity anisotropy, significantly correlated with physiologically observed MEP amplitudes (rmax=0.91, p=1.8×10(-5) rmean=0.81, p=0.01). These observations validate the implementation of individualistic FEM models to account for variations in gyral folding patterns and tissue conductivity anisotropy, which should help improve the targeting accuracy of TMS in the mapping or modulation of human brain circuits.
Scientific Reports | 2016
Alexander Opitz; Arnaud Falchier; Chao-Gan Yan; Erin Yeagle; Gary S. Linn; Pierre Megevand; Axel Thielscher; Ross A. Deborah; Michael P. Milham; Ashesh D. Mehta; Charles E. Schroeder
Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually reaches the brain, and how it distributes across the brain. Lack of this basic information precludes a firm mechanistic understanding of TES effects. In this study we directly measure the spatial and temporal characteristics of the electric field generated by TES using stereotactic EEG (s-EEG) electrode arrays implanted in cebus monkeys and surgical epilepsy patients. We found a small frequency dependent decrease (10%) in magnitudes of TES induced potentials and negligible phase shifts over space. Electric field strengths were strongest in superficial brain regions with maximum values of about 0.5 mV/mm. Our results provide crucial information of the underlying biophysics in TES applications in humans and the optimization and design of TES stimulation protocols. In addition, our findings have broad implications concerning electric field propagation in non-invasive recording techniques such as EEG/MEG.
Nature Communications | 2016
Maximilian Lenz; Christos Galanis; Florian Müller-Dahlhaus; Alexander Opitz; Corette J. Wierenga; Gábor Szabó; Ulf Ziemann; Thomas Deller; Klaus Funke; Andreas Vlachos
Repetitive transcranial magnetic stimulation (rTMS) is used as a therapeutic tool in neurology and psychiatry. While repetitive magnetic stimulation (rMS) has been shown to induce plasticity of excitatory synapses, it is unclear whether rMS can also modify structural and functional properties of inhibitory inputs. Here we employed 10-Hz rMS of entorhinohippocampal slice cultures to study plasticity of inhibitory neurotransmission on CA1 pyramidal neurons. Our experiments reveal a rMS-induced reduction in GABAergic synaptic strength (2–4 h after stimulation), which is Ca2+-dependent and accompanied by the remodelling of postsynaptic gephyrin scaffolds. Furthermore, we present evidence that 10-Hz rMS predominantly acts on dendritic, but not somatic inhibition. Consistent with this finding, a reduction in clustered gephyrin is detected in CA1 stratum radiatum of rTMS-treated anaesthetized mice. These results disclose that rTMS induces coordinated Ca2+-dependent structural and functional changes of specific inhibitory postsynapses on principal neurons.
Brain Stimulation | 2014
Jerel K Mueller; Wynn Legon; Alexander Opitz; Tomokazu Sato; William J. Tyler
BACKGROUND The integration of EEG recordings and transcranial neuromodulation has provided a useful construct for noninvasively investigating the modification of human brain circuit activity. Recent evidence has demonstrated that focused ultrasound can be targeted through the human skull to affect the amplitude of somatosensory evoked potentials and its associated spectral content. OBJECTIVE/HYPOTHESIS The present study tests whether focused ultrasound transmitted through the human skull and targeted to somatosensory cortex can affect the phase and phase rate of cortical oscillatory dynamics. METHODS A computational model was developed to gain insight regarding the insertion behavior of ultrasound induced pressure waves in the human head. The instantaneous phase and phase rate of EEG recordings before, during, and after transmission of transcranial focused ultrasound (tFUS) to human somatosensory cortex were examined to explore its effects on phase dynamics. RESULTS Computational modeling results show the skull effectively reinforces the focusing of tFUS due to curvature of material interfaces. Neurophysiological recordings show that tFUS alters the phase distribution of intrinsic brain activity for beta frequencies, but not gamma. This modulation was accompanied by a change in phase rate of both beta and gamma frequencies. Additionally, tFUS modulated phase distributions in the beta band of early sensory-evoked activity but did not affect late sensory-evoked activity, lending support to the spatial specificity of tFUS for neuromodulation. This spatial specificity was confirmed through an additional experiment where the ultrasound transducer was moved 1 cm laterally from the original cortical target. CONCLUSIONS Focused ultrasonic energy can alter EEG oscillatory dynamics through local mechanical perturbation of discrete cortical circuits.
Nature Communications | 2015
Rafael Polania; Marius Moisa; Alexander Opitz; Marcus Grueschow; Christian C. Ruff
Which meal would you like today, chicken or pasta? For such value-based choices, organisms must flexibly integrate various types of sensory information about internal states and the environment to transform them into actions. Recent accounts suggest that these choice-relevant processes are mediated by information transfer between functionally specialized but spatially distributed brain regions in parietal and prefrontal cortex; however, it remains unclear whether such fronto-parietal communication is causally involved in guiding value-based choices. We find that transcranially inducing oscillatory desynchronization between the frontopolar and -parietal cortex leads to more inaccurate choices between food rewards while leaving closely matched perceptual decisions unaffected. Computational modelling shows that this exogenous manipulation leads to imprecise value assignments to the choice alternatives. Thus, our study demonstrates that accurate value-based decisions critically involve coherent rhythmic information transfer between fronto-parietal brain areas and establishes an experimental approach to non-invasively manipulate the precision of value-based choices in humans.
Restorative Neurology and Neuroscience | 2014
Catarina Saiote; Thomas Goldschmidt; Charles Timäus; Martijn D. Steenwijk; Alexander Opitz; Andrea Antal; Walter Paulus; Michael A. Nitsche
PURPOSE Fatigue is a frequent and difficult to treat symptom affecting patients with multiple sclerosis (MS) with a profound negative impact on quality of life. Fatigue has been associated with functional and structural abnormalities of the frontal cortex, including frontal hypo-activation. The aim of this exploratory study was to assess whether fatigue symptoms can be reduced by excitability-enhancing anodal transcranial direct current stimulation (tDCS). METHODS In this sham-controlled, double-blind intervention study, tDCS was applied over the left prefrontal cortex of MS patients with fatigue for five consecutive days. Symptoms were tracked for 1 month via questionnaires. Lesion load at baseline was calculated for each patient and correlated with fatigue levels and responsiveness to stimulation. RESULTS In the whole group analysis the scores of the fatigue scales were not altered by tDCS. However, in an exploratory analysis we found a correlation between response to the stimulation regarding subjectively perceived fatigue and lesion load in the left frontal cortex: patients responding positively to anodal tDCS had higher lesion load, compared to non-responding patients. CONCLUSION We conclude that in patient subgroups discernible by specific morphological alterations, tDCS may be a tool for MS fatigue management.