Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander Plyusnin is active.

Publication


Featured researches published by Alexander Plyusnin.


Archives of Virology | 2002

Genetics of hantaviruses: implications to taxonomy

Alexander Plyusnin

Summary. Hantaviruses (genus Hantavirus, family Bunyaviridae) represent a prime example of emerging viruses. Since isolation of the prototype Hantaan virus in the late 70s more than 20 new species have been described and the number is increasing fast thus demanding for a more refined classification. Taking into account that hantaviruses are difficult to isolate in cell culture, one should not be surprised that most of the “newcomers” were first described as distinct hantavirus genotypes. Moreover, the only “solid” characteristics of many hantavirus species still exist in the form of nucleotide sequences of their genome. The relatively short history of hantavirology can thus be taken to illustrate how genetics can contribute to (and even, perhaps, dominate) discovery, characterization and classification of viruses. In this review the following aspects of hantavirus genetics are discussed: (i) genome structure; (ii) genetic diversity and evolution; and (iii) use of genetic criteria in current taxonomy of hantaviruses. In addition, several examples of classification of hantavirus species (New York virus, Saaremaa virus and Hokkaido virus) are given, and future prospects are analyzed.


Journal of Virology | 2001

Molecular Evolution of Puumala Hantavirus

Tarja Sironen; Antti Vaheri; Alexander Plyusnin

ABSTRACT Puumala virus (PUUV) is a negative-stranded RNA virus in the genusHantavirus, family Bunyaviridae. In this study, detailed phylogenetic analysis was performed on 42 complete S segment sequences of PUUV originated from several European countries, Russia, and Japan, the largest set available thus far for hantaviruses. The results show that PUUV sequences form seven distinct and well-supported genetic lineages; within these lineages, geographical clustering of genetic variants is observed. The overall phylogeny of PUUV is star-like, suggesting an early split of genetic lineages. The individual PUUV lineages appear to be independent, with the only exception to this being the Finnish and the Russian lineages that are closely connected to each other. Two strains of PUUV-like virus from Japan form the most ancestral lineage diverging from PUUV. Recombination points within the S segment were searched for and evidence for intralineage recombination events was seen in the Finnish, Russian, Danish, and Belgian lineages of PUUV. Molecular clock analysis showed that PUUV is a stable virus, evolving slowly at a rate of 0.7 × 10−7 to 2.2 × 10−6 nt substitutions per site per year.


Journal of General Virology | 1996

Distribution and genetic heterogeneity of Puumala virus in Sweden

Jan Hörling; Åke Lundkvist; Maarit Jaarola; Alexander Plyusnin; Håkan Tegelström; Katarina Persson; Heikki Lehväslaiho; Birger Hörnfeldt; Antti Vaheri; Bo Niklasson

Small mammals trapped in Sweden were analysed for specific antibody responses against three hantavirus serotypes and for the presence of viral antigen. To determine the genetic identity of viral RNA in lungs of seropositive bank voles (Clethrionomys glareolus), polymerase chain reactions and subsequent partial sequencing of both the M and S segments were employed. The sequences obtained were all identified as Puumala (PUU) virus, with a high degree of heterogeneity between the different geographical localities. Alignment of nucleotide and deduced amino acid sequences, together with phylogenetic analysis, showed that PUU viruses circulating in central Sweden were distinct from those in the northern region. The localization of the two distinct PUU virus genotypes was shown to correlate with the postglacial recolonization of Sweden by bank voles.


Journal of Virology | 2002

Cross-Protection against Challenge with Puumala Virus after Immunization with Nucleocapsid Proteins from Different Hantaviruses

Cristina de Carvalho Nicacio; Marcelo Gonzalez Della Valle; Paula Padula; Ewa Björling; Alexander Plyusnin; Åke Lundkvist

ABSTRACT Hantaviruses are rodent-borne agents that cause hemorrhagic fever with renal syndrome or hantavirus pulmonary syndrome in humans. The nucleocapsid protein (N) is relatively conserved among hantaviruses and highly immunogenic in both laboratory animals and humans, and it has been shown to induce efficient protective immunity in animal models. To investigate the ability of recombinant N (rN) from different hantaviruses to elicit cross-protection, we immunized bank voles with rN from Puumala (PUUV), Topografov (TOPV), Andes (ANDV), and Dobrava (DOBV) viruses and subsequently challenged them with PUUV. All animals immunized with PUUV and TOPV rN were completely protected. In the group immunized with DOBV rN, 7 of 10 animals were protected, while only 3 of 8 animals were protected in the group immunized with ANDV rN, which is more closely related to PUUV rN than DOBV rN. Humoral and cellular immune responses after rN immunization were also investigated. The highest cross-reactive humoral responses against PUUV antigen were detected in sera from ANDV rN-immunized animals, followed by those from TOPV rN-immunized animals, and only very low antibody cross-reactivity was observed in sera from DOBV rN-immunized animals. In proliferation assays, T lymphocytes from animals immunized with all heterologous rNs were as efficiently recalled in vitro by PUUV rN as were T lymphocytes from animals immunized with homologous protein. In summary, this study has shown that hantavirus N can elicit cross-protective immune responses against PUUV, and the results suggest a more important role for the cellular arm of the immune response than for the humoral arm in cross-protection elicited by rN.


Viruses | 2017

Vertebrate Reservoirs of Arboviruses: Myth, Synonym of Amplifier, or Reality?

Goro Kuno; John S. Mackenzie; Sandra Junglen; Zdenek Hubalek; Alexander Plyusnin; Duane J. Gubler

The rapid succession of the pandemic of arbovirus diseases, such as dengue, West Nile fever, chikungunya, and Zika fever, has intensified research on these and other arbovirus diseases worldwide. Investigating the unique mode of vector-borne transmission requires a clear understanding of the roles of vertebrates. One major obstacle to this understanding is the ambiguity of the arbovirus definition originally established by the World Health Organization. The paucity of pertinent information on arbovirus transmission at the time contributed to the notion that vertebrates played the role of reservoir in the arbovirus transmission cycle. Because this notion is a salient feature of the arbovirus definition, it is important to reexamine its validity. This review addresses controversial issues concerning vertebrate reservoirs and their role in arbovirus persistence in nature, examines the genesis of the problem from a historical perspective, discusses various unresolved issues from multiple points of view, assesses the present status of the notion in light of current knowledge, and provides options for a solution to resolve the issue.


Archives of Virology | 2018

Taxonomy of the family Arenaviridae and the order Bunyavirales: update 2018

Piet Maes; S. V. Alkhovsky; Yīmíng Bào; Martin Beer; Monica Birkhead; Thomas Briese; Michael J. Buchmeier; Charles H. Calisher; Rémi N. Charrel; Il Ryong Choi; Christopher S. Clegg; Juan Carlos de la Torre; Eric Delwart; Joseph L. DeRisi; Patrick L. Di Bello; Francesco Di Serio; Michele Digiaro; Valerian V. Dolja; Christian Drosten; Tobiasz Druciarek; Jiang Du; Hideki Ebihara; Toufic Elbeaino; Rose C. Gergerich; Amethyst Gillis; Jean-Paul J. Gonzalez; Anne-Lise Haenni; Jussi Hepojoki; U. Hetzel; Thiện Hồ

In 2018, the family Arenaviridae was expanded by inclusion of 1 new genus and 5 novel species. At the same time, the recently established order Bunyavirales was expanded by 3 species. This article presents the updated taxonomy of the family Arenaviridae and the order Bunyavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV) and summarizes additional taxonomic proposals that may affect the order in the near future.


Emerging Infectious Diseases | 2012

Analysis of Complete Puumala Virus Genome, Finland

Angelina Plyusnina; Maria Razzauti; Tarja Sironen; Jukka Niemimaa; Olli Vapalahti; Antti Vaheri; Heikki Henttonen; Alexander Plyusnin

Puumala virus causes nephropathia epidemica, a rodent-borne zoonosis that is endemic to Europe. We sequenced the complete Puumala virus genome that was directly recovered from a person who died and compared it with those of viruses from local bank voles. The virus strain involved was neither a unique nor rare genetic variant.


Viruses | 2015

Complete Genome and Phylogeny of Puumala Hantavirus Isolates Circulating in France

Guillaume Castel; Mathilde Couteaudier; Frank Sauvage; Jean-Baptiste Pons; Séverine Murri; Angelina Plyusnina; Dominique Pontier; Jean-François Cosson; Alexander Plyusnin; Philippe Marianneau; Noël Tordo

Puumala virus (PUUV) is the agent of nephropathia epidemica (NE), a mild form of hemorrhagic fever with renal syndrome (HFRS) in Europe. NE incidence presents a high spatial variation throughout France, while the geographical distribution of the wild reservoir of PUUV, the bank vole, is rather continuous. A missing piece of the puzzle is the current distribution and the genetic variation of PUUV in France, which has been overlooked until now and remains poorly understood. During a population survey, from 2008 to 2011, bank voles were trapped in eight different forests of France located in areas known to be endemic for NE or in area from where no NE case has been reported until now. Bank voles were tested for immunoglobulin (Ig)G ELISA serology and two seropositive animals for each of three different areas (Ardennes, Jura and Orleans) were then subjected to laboratory analyses in order to sequence the whole S, M and L segments of PUUV. Phylogenetic analyses revealed that French PUUV isolates globally belong to the central European (CE) lineage although isolates from Ardennes are clearly distinct from those in Jura and Orleans, suggesting a different evolutionary history and origin of PUUV introduction in France. Sequence analyses revealed specific amino acid signatures along the N protein, including in PUUV from the Orleans region from where NE in humans has never been reported. The relevance of these mutations in term of pathophysiology is discussed.


Virus Research | 2017

Estimation of main diversification time-points of hantaviruses using phylogenetic analyses of complete genomes

Guillaume Castel; Noël Tordo; Alexander Plyusnin

Because of the great variability of their reservoir hosts, hantaviruses are excellent models to evaluate the dynamics of virus-host co-evolution. Intriguing questions remain about the timescale of the diversification events that influenced this evolution. In this paper we attempted to estimate the first ever timing of hantavirus diversification based on thirty five available complete genomes representing five major groups of hantaviruses and the assumption of co-speciation of hantaviruses with their respective mammal hosts. Phylogenetic analyses were used to estimate the main diversification points during hantavirus evolution in mammals while host diversification was mostly estimated from independent calibrators taken from fossil records. Our results support an earlier developed hypothesis of co-speciation of known hantaviruses with their respective mammal hosts and hence a common ancestor for all hantaviruses carried by placental mammals.


Current Opinion in Virology | 2018

Hantavirus maintenance and transmission in reservoir host populations

Kristian M. Forbes; Tarja Sironen; Alexander Plyusnin

Hantaviruses are primarily hosted by mammalian species of the orders Rodentia, Eulipotyphla and Chiroptera. Spillover to humans is common, and understanding hantavirus maintenance and transmission in reservoir host populations is important for efforts to curtail human disease. Recent field research challenges traditional phases of virus shedding kinetics derived from laboratory rodent infection experiments. Organ infection sites in non-rodent hosts suggest similar transmission routes to rodents, but require direct assessment. Further advances have also been made in understanding virus persistence (and fadeouts) in fluctuating host populations, as well as occupational, recreational and environmental risk factors associated with spillover to humans. However, despite relevance for both intra-species and inter-species transmission, our understanding of the longevity of hantaviruses in natural environments remains limited.

Collaboration


Dive into the Alexander Plyusnin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guillaume Castel

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jean-François Cosson

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideki Ebihara

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge