Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander Postel is active.

Publication


Featured researches published by Alexander Postel.


Veterinary Research | 2012

Improved strategy for phylogenetic analysis of classical swine fever virus based on full-length E2 encoding sequences

Alexander Postel; Stefanie Schmeiser; Jennifer Bernau; Alexandra Meindl-Boehmer; Gediminas Pridotkas; Zuzana Dirbakova; Miroslav Mojzis; Paul Becher

Molecular epidemiology has proven to be an essential tool in the control of classical swine fever (CSF) and its use has significantly increased during the past two decades. Phylogenetic analysis is a prerequisite for virus tracing and thus allows implementing more effective control measures. So far, fragments of the 5´NTR (150 nucleotides, nt) and the E2 gene (190 nt) have frequently been used for phylogenetic analyses. The short sequence lengths represent a limiting factor for differentiation of closely related isolates and also for confidence levels of proposed CSFV groups and subgroups. In this study, we used a set of 33 CSFV isolates in order to determine the nucleotide sequences of a 3508–3510 nt region within the 5´ terminal third of the viral genome. Including 22 additional sequences from GenBank database different regions of the genome, comprising the formerly used short 5´NTR and E2 fragments as well as the genomic regions encoding the individual viral proteins Npro, C, Erns, E1, and E2, were compared with respect to variability and suitability for phylogenetic analysis. Full-length E2 encoding sequences (1119 nt) proved to be most suitable for reliable and statistically significant phylogeny and analyses revealed results as good as obtained with the much longer entire 5´NTR-E2 sequences. This strategy is therefore recommended by the EU and OIE Reference Laboratory for CSF as it provides a solid and improved basis for CSFV molecular epidemiology. Finally, the power of this method is illustrated by the phylogenetic analysis of closely related CSFV isolates from a recent outbreak in Lithuania.


Hepatology | 2015

Clinical course of infection and viral tissue tropism of hepatitis C virus–like nonprimate hepaciviruses in horses

Stephanie Pfaender; Jessika M.V. Cavalleri; Stephanie Walter; Juliane Doerrbecker; Benedetta Campana; Richard J. P. Brown; Peter D. Burbelo; Alexander Postel; Kerstin Hahn; Anggakusuma; Nina Riebesehl; Wolfgang Baumgärtner; Paul Becher; Markus H. Heim; Thomas Pietschmann; Karsten Feige; Eike Steinmann

Hepatitis C virus (HCV) has a very narrow species and tissue tropism and efficiently replicates only in humans and the chimpanzee. Recently, several studies identified close relatives to HCV in different animal species. Among these novel viruses, the nonprimate hepaciviruses (NPHV) that infect horses are the closest relatives of HCV described to date. In this study, we analyzed the NPHV prevalence in northern Germany and characterized the clinical course of infection and viral tissue tropism to explore the relevance of HCV‐related horse viruses as a model for HCV infection. We found that approximately 31.4% of 433 horses were seropositive for antibodies (Abs) against NPHV and approximately 2.5% carried viral RNA. Liver function analyses revealed no indication for hepatic impairment in 7 of 11 horses. However, serum gamma‐glutamyl transferase (GGT) concentrations were mildly elevated in 3 horses, and 1 horse displayed even highly elevated GGT levels. Furthermore, we observed that NPHV infection could be cleared in individual horses with a simultaneous emergence of nonstructural (NS)3‐specific Abs and transient elevation of serum levels of liver‐specific enzymes indicative for a hepatic inflammation. In other individual horses, chronic infections could be observed with the copresence of viral RNA and NS3‐specific Abs for over 6 months. For the determination of viral tissue tropism, we analyzed different organs and tissues of 1 NPHV‐positive horse using quantitative real‐time polymerase chain reaction and fluorescent in situ hydridization and detected NPHV RNA mainly in the liver and at lower amounts in other organs. Conclusion: Similar to HCV infections in humans, this work demonstrates acute and chronic stages of NPHV infection in horses with viral RNA detectable predominantly within the liver. (Hepatology 2015;61:448‐459)


Journal of Virology | 2015

Identification of a Novel Hepacivirus in Domestic Cattle from Germany

Christine Baechlein; Nicole Fischer; Adam Grundhoff; Malik Alawi; Daniela Indenbirken; Alexander Postel; Anna Lena Baron; Jennifer Offinger; Kathrin Becker; Andreas Beineke; Juergen Rehage; Paul Becher

ABSTRACT Hepatitis C virus (HCV) continues to represent one of the most significant threats to human health. In recent years, HCV-related sequences have been found in bats, rodents, horses, and dogs, indicating a widespread distribution of hepaciviruses among animals. By applying unbiased high-throughput sequencing, a novel virus of the genus Hepacivirus was discovered in a bovine serum sample. De novo assembly yielded a nearly full-length genome coding for a polyprotein of 2,779 amino acids. Phylogenetic analysis confirmed that the virus represents a novel species within the genus Hepacivirus. Viral RNA screening determined that 1.6% (n = 5) of 320 individual animals and 3.2% (n = 5) of 158 investigated cattle herds in Germany were positive for bovine hepacivirus. Repeated reverse transcription-PCR (RT-PCR) analyses of animals from one dairy herd proved that a substantial percentage of cows were infected, with some of them being viremic for over 6 months. Clinical and postmortem examination revealed no signs of disease, including liver damage. Interestingly, quantitative RT-PCR from different organs and tissues, together with the presence of an miR-122 binding site in the viral genome, strongly suggests a liver tropism for bovine hepacivirus, making this novel virus a promising animal model for HCV infections in humans. IMPORTANCE Livestock animals act as important sources for emerging pathogens. In particular, their large herd size and the existence of multiple ways of direct and food-borne infection routes emphasize their role as virus reservoirs. Apart from the search for novel viruses, detailed characterization of these pathogens is indispensable in the context of risk analysis. Here, we describe the identification of a novel HCV-like virus in cattle. In addition, determination of the prevalence and of the course of infection in cattle herds provides valuable insights into the biology of this novel virus. The results presented here form a basis for future studies targeting viral pathogenesis of bovine hepaciviruses and their potential to establish zoonotic infections.


Scientific Reports | 2016

Presence of atypical porcine pestivirus (APPV) genomes in newborn piglets correlates with congenital tremor

Alexander Postel; Florian Hansmann; Christine Baechlein; Nicole Fischer; Malik Alawi; Adam Grundhoff; Sarah Derking; Jörg Tenhündfeld; Vanessa M. Pfankuche; Vanessa Herder; Wolfgang Baumgärtner; Michael Wendt; Paul G. Becher

Pestiviruses are highly variable RNA viruses belonging to the continuously growing family Flaviviridae. A genetically very distinct pestivirus was recently discovered in the USA, designated atypical porcine pestivirus (APPV). Here, a screening of 369 sera from apparently healthy adult pigs demonstrated the existence of APPV in Germany with an estimated individual prevalence of 2.4% and ~10% at farm level. Additionally, APPV genomes were detected in newborn piglets affected by congenital tremor (CT), but genomes were absent in unaffected piglets. High loads of genomes were identified in glandular epithelial cells, follicular centers of lymphoid organs, the inner granular cell layer of the cerebellum, as well as in the trigeminal and spinal ganglia. Retrospective analysis of cerebellum samples from 2007 demonstrated that APPV can be found in piglets with CT of unsolved aetiology. Determination of the first European APPV complete polyprotein coding sequence revealed 88.2% nucleotide identity to the APPV sequence from the USA. APPV sequences derived from different regions in Germany demonstrated to be highly variable. Taken together, the results of this study strongly suggest that the presence of APPV genomes in newborn piglets correlates with CT, while no association with clinical disease could be observed in viremic adult pigs.


Journal of Veterinary Diagnostic Investigation | 2010

Evaluation of two commercial loop-mediated isothermal amplification assays for detection of avian influenza H5 and H7 hemagglutinin genes.

Alexander Postel; Tobias Letzel; Sieghard Frischmann; Christian Grund; Martin Beer; Timm C. Harder

Real-time reverse transcription loop–mediated isothermal amplification (real-time RT-LAMP) holds substantial potential as a highly sensitive, specific, and easy-to-perform molecular technique for pathogen detection in clinical samples. In the current study, the analytical and diagnostic performance of 2 commercial realtime RT-LAMP kits, Avian Flu H5 and Avian Flu H7, in detecting Avian influenza virus (AIV) infections were evaluated and compared with validated real-time reverse transcription polymerase chain reaction (RT-PCR) assays using RNA from reference virus isolates of subtypes H5 (n = 24) and H7 (n = 25) and of phylogenetically related subtypes (n = 20). When real-time RT-LAMP was carried out according to the recommendations of the manufacturer, 3 out of 24 H5 isolates and 8 out of 25 H7 reference strains were not detected. Prolonging the amplification phase resulted in detection of all H5 isolates but also in false positive detection of 2 non-H5 isolates. Real-time RT-LAMP specific to H7 failed to detect 2 H7 isolates after prolonged amplification. According to the examination of RNA log dilutions, the sensitivity of the real-time RT-LAMP assays, for a number of historic but also recent strains, was considerably lower compared with subtype-specific real-time RT-PCR assays. Application of the real-time RT-LAMP assays for analysis of diagnostic samples from wild birds confirmed their lower sensitivity. Commercial real-time RT-LAMP as tested in this study with a broad range of AIV H5 and H7 strains of phylogenetically diverse yet recent origin, holds some promise for routine veterinary diagnostic purposes, although real-time RT-LAMP was markedly more vulnerable to a reduction of detection limits because of strain-specific sequence variation than subtype-specific real-time RT-PCR.


Veterinary Microbiology | 2016

Frequent presence of hepaci and pegiviruses in commercial equine serum pools.

Alexander Postel; Jessika-M. V. Cavalleri; Stephanie Pfaender; Stephanie Walter; Eike Steinmann; Nicole Fischer; Karsten Feige; Ludwig Haas; Paul Becher

Novel viruses belonging to the genera Hepacivirus and Pegivirus have recently been discovered in horses and other animal species. Viral genomes of non-primate hepaciviruses (NPHV), equine pegivirus 1 (EPgV 1) and Theilers disease associated virus (TDAV) were detected in a horse serum routinely used for cell culture propagation in our laboratory. Therefore, a study was carried out to further investigate the presence of these human Hepatitis C virus (HCV) related viruses in equine serum based products used in veterinary medicine and for research and to characterize the viral genomes. Without exception all commercially available equine sera purchased for cell culture propagation (n=6) were tested positive for NPHV, EPgV 1 or TDAV genomes by qRT-PCR. Molecular analyses of one single commercial horse serum from Europe confirmed multiple viral genomes, including two TDAV genomes significantly different from the only published TDAV sequence. Furthermore, multiple batches of horse serum pools (n=35) collected for manufacturing of biological products turned out to be positive for NPHV and EPgV 1 genomes. Nevertheless, the final commercial products (n=9) were exclusively tested qRT-PCR negative. Field samples (n=119) obtained from two premises located in the same region as the donor horses were analyzed, demonstrating the frequent presence of NPHV and EPgV 1, but the absence of TDAV genomes. The presence of NPHV, EPgV 1 and TDAV in commercial equine sera and serum based products could have considerable consequences for biosecurity and may also bias the outcome of research studies conducted with related viruses.


Archives of Virology | 2013

First molecular identification and characterization of classical swine fever virus isolates from Nepal.

Alexander Postel; Vijay C. Jha; Stefanie Schmeiser; Paul Becher

Classical swine fever (CSF) is a major constraint to pig production worldwide, and in many developing countries, the epidemiological status is unknown. Here, for the first time, molecular identification and characterization of CSFV isolates from two recent outbreaks in Nepal are presented. Analysis of full-length E2-encoding sequences revealed that these isolates belonged to CSFV subgenotype 2.2 and had highest genetic similarity to isolates from India. Hence, for CSFV, Nepal and India should be regarded as one epidemiological unit. Both Nepalese isolates exhibited significant sequence differences, excluding a direct epidemiological connection and suggesting that CSFV is endemic in that country.


Emerging Infectious Diseases | 2015

Close Relationship of Ruminant Pestiviruses and Classical Swine Fever Virus

Alexander Postel; Stefanie Schmeiser; Tuba Çiğdem Oğuzoğlu; Daniela Indenbirken; Malik Alawi; Nicole Fischer; Adam Grundhoff; Paul Becher

To determine why serum from small ruminants infected with ruminant pestiviruses reacted positively to classical swine fever virus (CSFV)–specific diagnostic tests, we analyzed 2 pestiviruses from Turkey. They differed genetically and antigenically from known Pestivirus species and were closely related to CSFV. Cross-reactions would interfere with classical swine fever diagnosis in pigs.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Immune protection against reinfection with nonprimate hepacivirus

Stephanie Pfaender; Stephanie Walter; Elena Grabski; Daniel Todt; Janina Bruening; Inés Romero-Brey; Theresa Gather; Richard J. P. Brown; Kerstin Hahn; Christina Puff; Vanessa M. Pfankuche; Florian Hansmann; Alexander Postel; Paul G. Becher; Volker Thiel; Ulrich Kalinke; Bettina Wagner; Ralf Bartenschlager; Wolfgang Baumgärtner; Karsten Feige; Thomas Pietschmann; Jessika M.V. Cavalleri; Eike Steinmann

Significance Hepatitis C virus (HCV) displays a narrow species tropism severely hampering development of small animal models that are required for vaccine and pathogenesis studies in vivo. The recent discoveries of HCV-related hepaciviruses in diverse hosts offer new opportunities with respect to the development of an immunocompetent animal model for HCV research. Among the hepaciviruses, the equine nonprimate hepacivirus (NPHV) represents the closest homolog of HCV discovered to date. We defined key aspects of natural immunity to NPHV challenge in the cognate host and provide evidence for natural protection from NPHV infection. Further characterization of the immune signatures that confer protection against NPHV could provide important information that may facilitate the development of new prophylactic strategies including protective vaccines against HCV. Hepatitis C virus (HCV) displays a restricted host species tropism and only humans and chimpanzees are susceptible to infection. A robust immunocompetent animal model is still lacking, hampering mechanistic analysis of virus pathogenesis, immune control, and prophylactic vaccine development. The closest homolog of HCV is the equine nonprimate hepacivirus (NPHV), which shares similar features with HCV and thus represents an animal model to study hepacivirus infections in their natural hosts. We aimed to dissect equine immune responses after experimental NPHV infection and conducted challenge experiments to investigate immune protection against secondary NPHV infections. Horses were i.v. injected with NPHV containing plasma. Flow cytometric analysis was used to monitor immune cell frequencies and activation status. All infected horses became viremic after 1 or 2 wk and viremia could be detected in two horses for several weeks followed by a delayed seroconversion and viral clearance. Histopathological examinations of liver biopsies revealed mild, periportally accentuated infiltrations of lymphocytes, macrophages, and plasma cells with some horses displaying subclinical signs of hepatitis. Following viral challenge, an activation of equine immune responses was observed. Importantly, after a primary NPHV infection, horses were protected against rechallenge with the homologous as well as a distinct isolate with only minute amounts of circulating virus being detectable.


Genome Announcements | 2014

Complete Genome Sequence of Bovine Pestivirus Strain PG-2, a Second Member of the Tentative Pestivirus Species Giraffe.

Paul Becher; Nicole Fischer; Adam Grundhoff; Hanspeter Stalder; Matthias Schweizer; Alexander Postel

ABSTRACT We report the complete genome sequence of bovine pestivirus strain PG-2. The sequence data from this virus showed that PG-2 is closely related to the giraffe pestivirus strain H138. PG-2 and H138 belong to one pestivirus species that should be considered an approved member of the genus Pestivirus.

Collaboration


Dive into the Alexander Postel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul G. Becher

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Grundhoff

Heinrich Pette Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timm C. Harder

Friedrich Loeffler Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge