Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander S. Kitaysky is active.

Publication


Featured researches published by Alexander S. Kitaysky.


Hormones and Behavior | 2003

Benefits and costs of increased levels of corticosterone in seabird chicks.

Alexander S. Kitaysky; Evgenia V. Kitaiskaia; John F. Piatt; John C. Wingfield

Seabird chicks respond to food shortages by increasing corticosterone (cort) secretion, which is probably associated with fitness benefits and costs. To examine this, we experimentally increased levels of circulating cort in captive black-legged kittiwake chicks fed ad libitum. We found that cort-implanted chicks begged more frequently and were more aggressive compared to controls. These behavioral modifications must be beneficial to chicks as they facilitate acquisition of food from the parents and might trigger brood reduction and reduced competition for food. Cort-implanted chicks also increased food intake; however, their growth rates were similar to controls. To examine the costs of chronically increased circulating levels of cort, we removed cort implants and, after a 10-day recovery period, tested cognitive abilities of young kittiwakes. We found that the ability of kittiwakes to associate a visual cue with the presence of food in a choice situation was compromised by the experimental elevation of cort during development. To examine the long-term costs of increased levels of cort, 8 months later we tested the performance of the same individuals in a spatial task requiring them to make a detour around a barrier in order to escape from an enclosure. Individuals treated with cort during development took significantly more time to solve this task compared to controls. The results of this study suggest that the adrenocortical response of a developing bird to environmental stressors is associated with both benefits (increased food intake, foraging behavior, and aggression) and costs (low growth efficiency and compromised cognitive abilities later in life). This provides an evolutionary framework for relating juvenile physiological traits to fitness of birds in subsequent life-history stages.


Integrative and Comparative Biology | 2002

Endocrine Responses to Unpredictable Environmental Events: Stress or Anti-Stress Hormones?

John C. Wingfield; Alexander S. Kitaysky

Abstract In addition to seasonal changes in morphology, physiology and behavior that occur in predictable annual cycles, there are facultative responses to unpredictable events known as labile (i.e., short-lived) perturbation factors (LPFs). These rapid behavioral and physiological changes have been termed the “emergency” life history stage (ELHS) and serve to enhance life-time fitness. Glucocorticosteroids interacting with other hormones in the hypothalamo-pituitary-adrenal (HPA) cascade, initiate and orchestrate the ELHS within minutes to hours. Components of the ELHS include: redirection of behavior from a normal life history stage to increased foraging, irruptive-type migration during the day, enhanced restfulness at night, elevated gluconeogenesis and recovery once the perturbation passes. These physiological and behavioral changes allow an individual to avoid potential deleterious effects of stress that may result from chronically elevated levels of circulating glucocorticosteroids over days and weeks. In other words, acute rises in glucocorticosteroids following perturbations of the environment may actually avoid chronic stress and serve primarily as “anti-stress” hormones. Several field studies in diverse habitats indicate that free-living populations have elevated circulating levels of corticosteroids when in an ELHS. However, expression of an ELHS may not always be advantageous and there is accumulating evidence from birds that the adrenocortical responses to LPFs are modulated both on seasonal and individual levels. These data suggest that glucocorticosteroid secretions in response to LPFs not only trigger physiological and behavioral responses but also allow flexibility so that the response is integrated in relation to time of year (normal LHS) as well as individual differences owing to body condition, disease and social status.


Journal of Comparative Physiology B-biochemical Systemic and Environmental Physiology | 1999

The adrenocortical stress-response of Black-legged Kittiwake chicks in relation to dietary restrictions

Alexander S. Kitaysky; John F. Piatt; John C. Wingfield; M. Romano

Abstract In this study we examined hormonal responses of Black-legged Kittiwake (Rissatridactyla) chicks to experimental variations in energy content and nutritional quality (low or high lipid to protein ratio, LPR) of their food. Starting at the age of 10 days, chicks were fed either high or low LPR fish at 30, 50, 70 and 100% of ad libitum energy intake. After 20 days of treatment, chicks were exposed to a standardized acute handling and restraint stress protocol, where a baseline sample was taken immediately after taking a chick from the nest, and three additional blood samples were taken at intervals up to 50 min. Testosterone and corticosterone titres in plasma were measured via radioimmunoassay. We found that baseline testosterone levels were not significantly affected by the experimental treatments. Food-restricted chicks had elevated baseline and acute stress-induced levels of corticosterone compared to chicks fed ad libitum. An elevation of circulating levels of corticosterone in energetically stressed individuals was further magnified by low nutritional quality of food. Baseline and acute stress-induced corticosterone levels of chicks were negatively correlated with their fat reserves. We conclude that the physiological condition of Black-legged Kittiwake chicks can be assessed reliably by measuring circulating levels of corticosterone. We discuss short- and long-term effects of elevated corticosterone secretion in food-stressed nest-bound chicks.


Proceedings of the Royal Society of London B: Biological Sciences | 2006

A mechanistic link between chick diet and decline in seabirds

Alexander S. Kitaysky; Evgenia V. Kitaiskaia; John F. Piatt; John C. Wingfield

A climatic regime shift during the mid-1970s in the North Pacific resulted in decreased availability of lipid-rich fish to seabirds and was followed by a dramatic decline in number of kittiwakes breeding on the Pribilof Islands. Although production of chicks in the mid-1970s was adequate to sustain kittiwake populations in the early 1980s, the disappearance of birds from breeding colonies apparently exceeded recruitment. No mechanism has been proposed to explain why recruitment would differ among fledglings fed lipid-rich or lipid-poor fish during development. Here we show that diets low in lipids induce nutritional stress and impair cognitive abilities in young red-legged kittiwakes, Rissa brevirostris. Specifically, growth retardation, increased secretion of stress hormones and inferior ability to associate food distribution with visual cues were observed in individuals fed lipid-poor diets. We conclude that lipid-poor diets during development affect the quality of young seabirds, which is likely to result in their increased mortality and low recruitment.


Oecologia | 2007

Effects of nutritional restriction on nitrogen and carbon stable isotopes in growing seabirds

Cory T. Williams; C. Loren Buck; Justine Sears; Alexander S. Kitaysky

When using stable isotopes as dietary tracers it is essential to consider effects of nutritional state on isotopic fractionation. While starvation is known to induce enrichment of 15N in body tissues, effects of moderate food restriction on isotope signatures have rarely been tested. We conducted two experiments to investigate effects of a 50–55% reduction in food intake on δ15N and δ13C values in blood cells and whole blood of tufted puffin chicks, a species that exhibits a variety of adaptive responses to nutritional deficits. We found that blood from puffin chicks fed ad libitum became enriched in 15N and 13C compared to food-restricted chicks. Our results show that 15N enrichment is not always associated with food deprivation and argue effects of growth on diet–tissue fractionation of nitrogen stable isotopes (Δ15N) need to be considered in stable isotope studies. The decrease in δ13C of whole blood and blood cells in restricted birds is likely due to incorporation of carbon from 13C-depleted lipids into proteins. Effects of nutritional restriction on δ15N and δ13C values were relatively small in both experiments (δ15N: 0.77 and 0.41‰, δ13C: 0.20 and 0.25‰) compared to effects of ecological processes, indicating physiological effects do not preclude the use of carbon and nitrogen stable isotopes in studies of seabird ecology. Nevertheless, our results demonstrate that physiological processes affect nitrogen and carbon stable isotopes in growing birds and we caution isotope ecologists to consider these effects to avoid drawing spurious conclusions.


Hormones and Behavior | 2005

The adrenocortical response of tufted puffin chicks to nutritional deficits.

Alexander S. Kitaysky; Marc D. Romano; John F. Piatt; John C. Wingfield; Motoshi Kikuchi

In several seabirds, nutritional state of a nest-bound chick is negatively correlated with the activity of its hypothalamus-pituitary-adrenal (HPA) axis. Increased corticosterone (cort) secretion has been shown to facilitate changes in behavior that allow hungry chicks to obtain more food from parents. However, if parents are not willing/able to buffer their young from temporary food shortages, increased cort secretion could be detrimental to undernourished chicks. In a system where parents are insensitive to chick demands, low benefits and high costs of activation of the HPA-axis in hungry chicks should lead to a disassociation of the nutritional state of the young and the activity of its HPA-axis. We tested this novel hypothesis for the tufted puffin (Fratercula cirrhata), a seabird with intermittent provisioning of a nest-bound semi-precocial chick. We examined the HPA-axis activity of captive chicks exposed to the following: (1) a short-term (24 h) food deprivation; and (2) an array of prolonged (3 weeks) restrictions in feeding regimens. We found that in response to a short-term food deprivation chicks decreased baseline levels of cort and thyroid hormones. In response to prolonged restrictions, food-limited chicks exhibited signs of nutritional deficit: they had lower body mass, endogenous lipid reserves, and thyroid hormone titers compared to chicks fed ad libitum. However, baseline and maximum acute stress-induced levels of cort were also lower in food-restricted chicks compared to those of chicks fed ad libitum. These results support a major prediction of the study hypothesis that puffin chicks suppress HPA-axis activity in response to short- and long-term nutritional deficits. This physiological adaptation may allow a chick to extend its development in the nest, while eluding detrimental effects of chronic cort elevation.


Proceedings of the Royal Society of London B: Biological Sciences | 2006

The relationship between migratory behaviour, memory and the hippocampus : an intraspecific comparison

Vladimir V. Pravosudov; Alexander S. Kitaysky; Alicja Omanska

It has been hypothesized that memory-demanding ecological conditions might result in enhanced memory and an enlarged hippocampus, an area of the brain involved in memory processing, either via extensive memory experience or through evolutionary changes. Avian migration appears to represent one of such memory-demanding ecological conditions. We compared two subspecies of the white-crowned sparrow: migratory Zonotrichia leucophrys gambelii and non-migratory Z. l. nuttalli. Compared to non-migratory Z. l. nuttalli, migratory Z. l. gambelii showed better memory performance on spatial one-trial associative learning tasks and had more hippocampal neurons. Migratory subspecies also had larger hippocampi relative to the remainder of the telencephalon but not relative to body mass. In adults, the differences between migratory and non-migratory sparrows were especially pronounced in the right hippocampus. Juvenile migratory Z. l. gambelii had relatively larger hippocampal volume compared to juvenile non-migratory Z. l. nuttalli. Adult migratory Z. l. gambelii had more neurons in their right hippocampus compared to juveniles but such differences were not found in non-migratory Z. l. nuttalli. Our results suggest that migratory behaviour might be related to enhanced spatial memory and an enlarged hippocampus with more neurons, and that differences in the hippocampus between migratory and non-migratory sparrows might be experience-dependent. Furthermore, for the first time our results suggest that the right hippocampus, which encodes global spatial information, might be involved in migratory behaviour.


General and Comparative Endocrinology | 2008

Corticosterone levels of tufted puffins vary with breeding stage, body condition index, and reproductive performance

Cory T. Williams; Alexander S. Kitaysky; Arthur B. Kettle; C. Loren Buck

Corticosterone (CORT) levels in free-living animals are seasonally modulated and vary with environmental conditions. Although most studies measure total CORT concentrations, levels of corticosteroid binding globulin (CBG) may also be modulated, thus altering the concentration of CORT available for diffusion into tissues (free CORT). We investigated the seasonal dynamics of CBG, total CORT, and free CORT in breeding tufted puffins (Fratercula cirrhata) during 2 years characterized by high rates of nestling growth and survival. We then compared concentrations of total CORT in this population to levels in chick-rearing puffins at another colony during 2 years with low productivity. At the high productivity colony, levels of CBG, total baseline CORT, free baseline CORT, and total maximum CORT were all higher prior to egg-laying than during late incubation and late chick-rearing. Levels of CBG were positively correlated with body condition index (BCI) and free baseline CORT was negatively correlated with BCI. Total baseline levels of CORT during chick-rearing were two to four times higher at the colony with low rates of nestling growth and survival. Our results demonstrate the need for long-term datasets to disentangle seasonal trends in CORT levels from trends driven by changes in environmental conditions. Given the negative effects associated with chronic elevation of CORT, our results indicate the cost of reproduction may be higher during years characterized by low productivity.


Oecologia | 2011

Adverse foraging conditions may impact body mass and survival of a high Arctic seabird

Ann M. A. Harding; Jorg Welcker; Harald Steen; Keith C. Hamer; Alexander S. Kitaysky; Jérôme Fort; Sandra L. Talbot; Leslie A. Cornick; Nina J. Karnovsky; Geir Wing Gabrielsen; David Grémillet

Tradeoffs between current reproduction and future survival are widely recognized, but may only occur when food is limited: when foraging conditions are favorable, parents may be able to reproduce without compromising their own survival. We investigated these tradeoffs in the little auk (Alle alle), a small seabird with a single-egg clutch. During 2005–2007, we examined the relationship between body mass and survival of birds breeding under contrasting foraging conditions at two Arctic colonies. We used corticosterone levels of breeding adults as a physiological indicator of the foraging conditions they encountered during each reproductive season. We found that when foraging conditions were relatively poor (as reflected in elevated levels of corticosterone), parents ended the reproductive season with low body mass and suffered increased post-breeding mortality. A positive relationship between body mass and post-breeding survival was found in one study year; light birds incurred higher survival costs than heavy birds. The results of this study suggest that reproducing under poor foraging conditions may affect the post-breeding survival of long-lived little auks. They also have important demographic implications because even a small change in adult survival may have a large effect on populations of long-lived species.


Physiological and Biochemical Zoology | 1999

Metabolic and Developmental Responses of Alcid Chicks to Experimental Variation in Food Intake

Alexander S. Kitaysky

I tested whether the ability of chicks to suspend growth and developmental processes in response to food shortages is greater among alcids with food resources that fluctuate over short time periods than it is among close relatives with food that is continuously available. I examined changes in chick resting metabolic rate (RMR) in response to short‐term food deprivation in horned and tufted puffins (intermittent food provisioning) and crested and parakeet auklets (continuous food provisioning). RMR was based on measurements of chick oxygen consumption rates (Vo2) under thermoneutral conditions. RMR of postabsorptive chicks scaled allometrically with body mass, and regression slopes were statistically indistinguishable among species. Mass‐independent RMR of the same individuals decreased significantly after 48 h of food deprivation. The decrease in the mass‐independent RMR was greater in puffins (46.8% in horned and 47.4% in tufted puffins) than in auklets (29.4% in crested and 23.7% in parakeet auklets). To test whether the observed decrease in RMR was due to less energy being allocated to growth, I examined developmental responses of horned and tufted puffins to experimental variation in rates of food intake. I found retarded growth rates in body mass, skeletal elements, and feathers in chicks experiencing low rates of food intake. The retardation of growth processes extended the developmental period. My findings suggest that developmental plasticity in juvenile alcids might be related to temporal variability of prey in oceanic environments.

Collaboration


Dive into the Alexander S. Kitaysky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John F. Piatt

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Rebecca C. Young

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Alexis P. Will

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott A. Hatch

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Akinori Takahashi

National Institute of Polar Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jorg Welcker

Norwegian Polar Institute

View shared research outputs
Top Co-Authors

Avatar

Nobuo Kokubun

National Institute of Polar Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge