Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander Scholten is active.

Publication


Featured researches published by Alexander Scholten.


PLOS ONE | 2011

Differential Calcium Signaling by Cone Specific Guanylate Cyclase-Activating Proteins from the Zebrafish Retina

Alexander Scholten; Karl-Wilhelm Koch

Zebrafish express in their retina a higher number of guanylate cyclase-activating proteins (zGCAPs) than mammalians pointing to more complex guanylate cyclase signaling systems. All six zGCAP isoforms show distinct and partial overlapping expression profiles in rods and cones. We determined critical Ca2+-dependent parameters of their functional properties using purified zGCAPs after heterologous expression in E.coli. Isoforms 1–4 were strong, 5 and 7 were weak activators of membrane bound guanylate cyclase. They further displayed different Ca2+-sensitivities of guanylate cyclase activation, which is half maximal either at a free Ca2+ around 30 nM (zGCAP1, 2 and 3) or around 400 nM (zGCAP4, 5 and 7). Zebrafish GCAP isoforms showed also differences in their Ca2+/Mg2+-dependent conformational changes and in the Ca2+-dependent monomer-dimer equilibrium. Direct Ca2+-binding revealed that all zGCAPs bound at least three Ca2+. The corresponding apparent affinity constants reflect binding of Ca2+ with high (≤100 nM), medium (0.1–5 µM) and/or low (≥5 µM) affinity, but were unique for each zGCAP isoform. Our data indicate a Ca2+-sensor system in zebrafish rod and cone cells supporting a Ca2+-relay model of differential zGCAP operation in these cells.


Biochimica et Biophysica Acta | 2009

Expression profiles of three novel sensory guanylate cyclases and guanylate cyclase-activating proteins in the zebrafish retina

Nina Rätscho; Alexander Scholten; Karl-Wilhelm Koch

Three membrane bound sensory guanylate cyclases are expressed in photoreceptor cells of the developing and adult zebrafish retina. First appearance of mRNA transcripts was detected by in situ hybridization techniques for all guanylate cyclases between 3 and 4 days post fertilization (dpf), but only one isoform (guanylate cyclase 3) appeared to be specifically expressed in cones of the adult retina. Transcripts of three cone specific guanylate cyclase-activating proteins (zGCAP3, zGCAP4 and zGCAP7) were also detected at 3-4 dpf. The expression onset of the guanylate cyclases and these neuronal calcium sensor proteins mainly overlapped. High guanylate cyclase activities in larval eye preparations and the precisely controlled coexpression of guanylate cyclases and zGCAPs coincide with the onset of visual function at 3-4 dpf.


Journal of Neurochemistry | 2012

Operation profile of zebrafish guanylate cyclase-activating protein 3

Ramona Fries; Alexander Scholten; Werner Säftel; Karl-Wilhelm Koch

J. Neurochem. (2012) 121, 54–65.


Human Molecular Genetics | 2015

Two retinal dystrophy-associated missense mutations in GUCA1A with distinct molecular properties result in a similar aberrant regulation of the retinal guanylate cyclase

Valerio Marino; Alexander Scholten; Karl-Wilhelm Koch; Daniele Dell'Orco

Two recently identified missense mutations (p. L84F and p. I107T) in GUCA1A, the gene coding for guanylate cyclase (GC)-activating protein 1 (GCAP1), lead to a phenotype ascribable to cone, cone-rod and macular dystrophies. Here, we present a thorough biochemical and biophysical characterization of the mutant proteins and their distinct molecular features. I107T-GCAP1 has nearly wild-type-like protein secondary and tertiary structures, and binds Ca(2+) with a >10-fold lower affinity than the wild-type. On the contrary, L84F-GCAP1 displays altered tertiary structure in both GC-activating and inhibiting states, and a wild type-like apparent affinity for Ca(2+). The latter mutant also shows a significantly high affinity for Mg(2+), which might be important for stabilizing the GC-activating state and inducing a cooperative mechanism for the binding of Ca(2+), so far not been observed in other GCAP1 variants. Moreover, the thermal stability of L84F-GCAP1 is particularly high in the Ca(2+)-bound, GC-inhibiting state. Molecular dynamics simulations suggest that such enhanced stability arises from a deeper burial of the myristoyl moiety within the EF1-EF2 domain. The simulations also support an allosteric mechanism connecting the myristoyl moiety to the highest-affinity Ca(2+) binding site EF3. In spite of their remarkably distinct molecular features, both mutants cause constitutive activation of the target GC at physiological Ca(2+). We conclude that the similar aberrant regulation of the target enzyme results from a similar perturbation of the GCAP1-GC interaction, which may eventually cause dysregulation of both Ca(2+) and cyclic GMP homeostasis and result in retinal degeneration.


PLOS ONE | 2013

Zebrafish guanylate cyclase type 3 signaling in cone photoreceptors.

Ramona Fries; Alexander Scholten; Werner Säftel; Karl-Wilhelm Koch

The zebrafish guanylate cyclase type 3 (zGC3) is specifically expressed in cone cells. A specifc antibody directed against zGC3 revealed expression at the protein level at 3.5 dpf in outer and inner retinal layers, which increased in intensity between 3.5 and 7 dpf. This expression pattern differed from sections of the adult retina showing strong immunostaining in outer segments of double cones and short single cones, less intense immunoreactivity in long single cones, but no staining in the inner retina. Although transcription and protein expression levels of zGC3 are similar to that of the cyclase regulator guanylate cyclase-activating protein 3 (zGCAP3), we surprisingly found that zGCAP3 is present in a 28-fold molar excess over zGC3 in zebrafish retinae. Further, zGCAP3 was an efficient regulator of guanylate cyclases activity in native zebrafish retinal membrane preparations. Therefore, we investigated the physiological function of zGCAP3 by two different behavioral assays. Using the morpholino antisense technique, we knocked down expression of zGCAP3 and recorded the optokinetic and optomotor responses of morphants, control morphants, and wild type fish at 5–6 dpf. No significant differences in behavioral responses among wild type, morphants and control morphants were found, indicating that a loss of zGCAP3 has no consequences in primary visual processing in the larval retina despite its prominent expression pattern. Its physiological function is therefore compensated by other zGCAP isoforms.


Biochemistry | 2016

Mapping Calcium-Sensitive Regions in the Neuronal Calcium Sensor GCAP2 by Site-Specific Fluorescence Labeling

Stefan Sulmann; Melanie Wallisch; Alexander Scholten; Jens Christoffers; Karl-Wilhelm Koch

Myristoylation of most neuronal calcium sensor proteins, a group of EF-hand calcium-binding proteins mainly expressed in neuronal tissue, can have a strong impact on protein dynamics and functional properties. Intracellular oscillations of the free Ca(2+) concentration can trigger conformational changes in Ca(2+) sensors. The position and possible movements of the myristoyl group in the photoreceptor cell-specific Ca(2+) sensor GCAP2 are not well-defined but appear to be different from those of the highly homologous cognate GCAP1. We designed and applied a new group of diaminoterephthalate-derived fluorescent probes to label GCAP2 at a covalently attached 12-azido-dodecanoic acid (a myristoyl substitute) and at cysteine residues in critical positions. Fluorescence emission of dye-labeled GCAP2 decreased when going from low (10(-9) M) to high [Ca(2+)] (10(-3) M), reaching a half-maximal effect of fluorescence emission at 0.44 ± 0.07 μM. The modified acyl group can therefore monitor changes in the protein conformation during binding and dissociation of Ca(2+) in the physiological range of free [Ca(2+)]. However, fluorescence quenching studies showed that the dye-acyl chain was shielded from the quencher by an adjacent polypeptide region. Further probing three cysteine positions (C35, C111, and C131) by dye labeling revealed that all positions were also sensitive to a change in [Ca(2+)], but only one (C131) was sensitive to a change in [Mg(2+)]. We suggest a scenario during illumination of the photoreceptor cell in which Ca(2+) dissociates first from low and medium affinity binding sites. These steps are sensed by dyes in cysteines at positions 35 and 111. Release of Ca(2+) from high affinity sites is sensed by regions adjacent to the dye-labeled fatty acid and involves the critical conformational change leading to activating guanylate cyclase.


Biochimica et Biophysica Acta | 2015

Regulatory function of the c-terminal segment of guanylate cyclase-activating protein 2

Evgeni Yu. Zernii; Ilya I. Grigoriev; Aliya A. Nazipova; Alexander Scholten; Tatiana V. Kolpakova; Dmitry V. Zinchenko; Alexey S. Kazakov; Ivan I. Senin; Sergei E. Permyakov; Daniele Dell’Orco; Pavel P. Philippov; Karl-W. Koch

Neuronal responses to Ca2+-signals are provided by EF-hand-type neuronal Ca2+-sensor (NCS) proteins, which have similar core domains containing Ca2+-binding and target-recognizing sites. NCS proteins vary in functional specificity, probably depending on the structure and conformation of their non-conserved C-terminal segments. Here, we investigated the role of the C-terminal segment in guanylate cyclase activating protein-2, GCAP2, an NCS protein controlling the Ca2+-dependent regulation of photoreceptor guanylate cyclases. We obtained two chimeric proteins by exchanging C-terminal segments between GCAP2 and its photoreceptor homolog recoverin, a Ca2+-sensor controlling rhodopsin kinase (RK) activity. The exchange affected neither the structural integrity of GCAP2 and recoverin nor the Ca2+-sensitivity of GCAP2. Intrinsic fluorescence, circular dichroism, biochemical studies and hydrophobic dye probing revealed Ca2+-dependent conformational transition of the C-terminal segment of GCAP2 occurring in the molecular environment of both proteins. In Ca2+-GCAP2, the C-terminal segment was constrained and its replacement provided the protein with approximately two-fold inhibitory activity towards RK, suggesting that the segment contributes to specific target recognition by interfering with RK-binding. Upon Ca2+-release, it became less constrained and more available for phosphorylation by cyclic nucleotide-dependent protein kinase. The transition from the Ca2+-bound to the apo-state exposed hydrophobic sites in GCAP2, and was associated with its activating function without affecting its dimerization. The released C-terminal segment participated further in photoreceptor membrane binding making it sensitive to phosphorylation. Thus, the C-terminal segment in GCAP2 confers target selectivity, facilitates membrane binding and provides sensitivity of the membrane localization of the protein to phosphorylation by signaling kinases.


Biochemistry | 2017

Structural Characterization of Ferrous Ion Binding to Retinal Guanylate Cyclase Activator Protein 5 from Zebrafish Photoreceptors

Sunghyuk Lim; Alexander Scholten; Grace Manchala; Diana Cudia; Sarah-Karina Zlomke-Sell; Karl-W. Koch; James B. Ames

Sensory guanylate cyclases (zGCs) in zebrafish photoreceptors are regulated by a family of guanylate cyclase activator proteins (called GCAP1-7). GCAP5 contains two nonconserved cysteine residues (Cys15 and Cys17) that could in principle bind to biologically active transition state metal ions (Zn2+ and Fe2+). Here, we present nuclear magnetic resonance (NMR) and isothermal titration calorimetry (ITC) binding analyses that demonstrate the binding of one Fe2+ ion to two GCAP5 molecules (in a 1:2 complex) with a dissociation constant in the nanomolar range. At least one other Fe2+ binds to GCAP5 with micromolar affinity that likely represents electrostatic Fe2+ binding to the EF-hand loops. The GCAP5 double mutant (C15A/C17A) lacks nanomolar binding to Fe2+, suggesting that Fe2+ at this site is ligated directly by thiolate groups of Cys15 and Cys17. Size exclusion chromatography analysis indicates that GCAP5 forms a dimer in the Fe2+-free and Fe2+-bound states. NMR structural analysis and molecular docking studies suggest that a single Fe2+ ion is chelated by thiol side chains from Cys15 and Cys17 in the GCAP5 dimer, forming an [Fe(SCys)4] complex like that observed previously in two-iron superoxide reductases. Binding of Fe2+ to GCAP5 weakens its ability to activate photoreceptor human GC-E by decreasing GC activity >10-fold. Our results indicate a strong Fe2+-induced inhibition of GC by GCAP5 and suggest that GCAP5 may serve as a redox sensor in visual phototransduction.


Frontiers in Molecular Neuroscience | 2018

Zebrafish Recoverin Isoforms Display Differences in Calcium Switch Mechanisms

Dana Elbers; Alexander Scholten; Karl-Wilhelm Koch

Primary steps in vertebrate vision occur in rod and cone cells of the retina and require precise molecular switches in excitation, recovery, and adaptation. In particular, recovery of the photoresponse and light adaptation processes are under control of neuronal Ca2+ sensor (NCS) proteins. Among them, the Ca2+ sensor recoverin undergoes a pronounced Ca2+-dependent conformational change, a prototypical so-called Ca2+-myristoyl switch, which allows selective targeting of G protein-coupled receptor kinase. Zebrafish (Danio rerio) has gained attention as a model organism in vision research. It expresses four different recoverin isoforms (zRec1a, zRec1b, zRec2a, and zRec2b) that are orthologs to the one known mammalian variant. The expression pattern of the four isoforms cover both rod and cone cells, but the differential distribution in cones points to versatile functions of recoverin in these cell types. Initial functional studies on zebrafish larvae indicate different Ca2+-sensitive working modes for zebrafish recoverins, but experimental evidence is lacking so far. The aims of the present study are (1) to measure specific Ca2+-sensing properties of the different recoverin isoforms, (2) to ask whether switch mechanisms triggered by Ca2+ resemble that one observed with mammalian recoverin, and (3) to investigate a possible impact of an attached myristoyl moiety. For addressing these questions, we employ fluorescence spectroscopy, surface plasmon resonance (SPR), dynamic light scattering, and equilibrium centrifugation. Exposure of hydrophobic amino acids, due to the myristoyl switch, differed among isoforms and depended also on the myristoylation state of the particular recoverin. Ca2+-induced rearrangement of the protein-water shell was for all variants less pronounced than for the bovine ortholog indicating either a modified Ca2+-myristoyl switch or no switch. Our results have implications for a step-by-step response of recoverin isoforms to changing intracellular Ca2+ during illumination.


European Journal of Organic Chemistry | 2012

Turning On Fluorescence with Thiols – Synthetic and Computational Studies on Diaminoterephthalates and Monitoring the Switch of the Ca2+ Sensor Recoverin

Nina Wache; Alexander Scholten; Thorsten Klüner; Karl-Wilhelm Koch; Jens Christoffers

Collaboration


Dive into the Alexander Scholten's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramona Fries

University of Oldenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karl-W. Koch

University of Oldenburg

View shared research outputs
Top Co-Authors

Avatar

Petra Behnen

University of Oldenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elisabeth Kremmer

German Center for Neurodegenerative Diseases

View shared research outputs
Researchain Logo
Decentralizing Knowledge