Alexander Short
European Space Agency
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander Short.
Proceedings of SPIE | 2014
Thibaut Prod'homme; P. Verhoeve; Ralf Kohley; Alexander Short; N. Boudin
The science objectives of space missions using CCDs to carry out accurate astronomical measurements are put at risk by the radiation-induced increase in charge transfer inefficiency (CTI) that results from trapping sites in the CCD silicon lattice. A variety of techniques are used to obtain CTI values and derive trap parameters, however they often differ in results. To identify and understand these differences, we take advantage of an on-going comprehensive characterisation of an irradiated Euclid prototype CCD including the following techniques: X-ray, trap pumping, flat field extended pixel edge response and first pixel response. We proceed to a comparative analysis of the obtained results.
Proceedings of SPIE | 2010
Alexander Short; Thibaut Prod'homme; Michael Weiler; S. Brown; Anthony G. A. Brown
The European Space Agencys Gaia mission1 is scheduled for launch in 2012. It will operate at L2 for 5 years, rotating slowly so that its two optical telescopes will repeatedly observe more than one billion stars. The resulting data set will be iteratively reduced to solve for the relative position, parallax-distance and proper motion of every observed star, yielding a three dimensional dynamical model of our galaxy. The focal plane contains 106 large area silicon CCDs continuously operating in TDI mode at a line rate synchronised with the satellite rotation.2 One of the greatest challenges facing the mission is radiation damage in the CCDs which will cause charge loss and image distortion. This is particularly severe because the large focal plane is difficult to shield and because the launch will coincide with solar maximum. Despite steps taken to minimize the effects of radiation (e.g. regular use of charge injection), the residual distortion will need to be calibrated during the pipeline data processing. Due to the volume of data involved, this requires a trapping model which is physically realistic, yet fast enough and simple enough to implement in the pipeline. The current prototype Charge Distortion Model will be presented. This model was developed specifically for Gaia in TDI mode. However, an imaging mode version has already been applied to other missions, for example, to indicate the potential impact of radiation damage on the proposed Euclid mission.
Proceedings of SPIE | 2014
Ralf Kohley; C. Crowley; Philippe Garé; François Chassat; Alexander Short; Juan Manuel Martin-Fleitas; A. Mora; Asier Abreu-Aramburu; Thibaut Prod'homme
The radiation environment at L2 is of great importance to the science instruments of Gaia. Especially the non-ionising damage to the CCDs and the resulting increase in charge transfer inefficiency will ultimately limit the achievable science performance. With its launch in December 2013 for a nominal mission of 5 years Gaia is continuously collecting invaluable information of radiation effects on the 106 CCDs in the FPA from the analysis of the science data and dedicated calibration procedures. The paper shows first results and discusses the detected irradiation background with respect to predictions and reviews operational implications for the mission.
Proceedings of SPIE | 2012
J. Endicott; A. Walker; S. Bowring; P. Turner; D. Allen; O. Piersanti; Alexander Short; D. Walton
PLATO is a candidate mission for an European Space Agency M-class launch opportunity. The project aims to detect exo-planets from their transits across host stars and to characterise those stars by studying their oscillations, hence the name PLATO for, PLAnetary Transits and Oscillations of stars. In order to achieve this aim the mission proposes to fly a satellite with a focal plane of up to 34 mini-telescopes, each containing 4 large area back illuminated Charge-Coupled Devices (CCDs) to provide ultra high precision photometry. If successful, the satellite will have nearly 0.9 m2 of image sensors and will be by far the largest composite detector focal plane ever flown. To meet the mission requirements e2v have developed the CCD270 which has 4510 by 4510 pixels, each pixel is 18 μm by 18 μm, in a development funded by the European Space Agency. This large area (81 mm x 81 mm) full frame image sensor is intended for precision photometry with a dynamic range in excess of 30,000. The CCD270 has been manufactured with a thinner gate dielectric and a higher buried channel dose than standard devices to increase the full well capacity in the image area. The additional advantages of the thinner gate are lower power dissipation, smaller clock voltage swing for standard channel doses and higher tolerance to ionising radiation. This paper describes the imager sensor in detail and focuses on the novel aspects of the device, package and interface.
Proceedings of SPIE | 2010
Thibaut Prod'homme; Michael Weiler; S. Brown; Alexander Short; Anthony G. A. Brown
ESAs Gaia mission aims to create a complete and highly accurate stereoscopic map of the Milky Way. The stellar parallaxes will be determined at the micro-arcsecond level, as a consequence the measurement of the stellar image location on the CCD must be highly accurate. The solar wind protons will create charge traps in the CCDs of Gaia, which will induce large charge loss and distort the stellar images causing a degradation of the location measurement accuracy. Accurate modelling of the stellar image distortion induced by radiation is required to mitigate these effects. We assess the capability of a fast physical analytical model of radiation damage effects called the charge distortion model (CDM) to reproduce experimental data. To realize this assessment we developed a rigorous procedure that compares at the sub-pixel level the model outcomes to damaged images extracted from the experimental tests. We show that CDM can reproduce accurately up to a certain level the test data acquired on a highly irradiated device operated in time delay integration mode for different signal levels and different illumination histories. We discuss the potential internal and external factors that contributed to limit the agreement between the data and the charge distortion model. To investigate these limiting factors further, we plan to apply our comparison procedure on a synthetic dataset generated through detailed Monte-Carlo simulations at the CCD electrode level.
Proceedings of SPIE | 2014
Thibaut Prod'homme; P. Verhoeve; T. Oosterbroek; N. Boudin; Alexander Short; Ralf Kohley
Euclid is the ESA mission to map the geometry of the dark universe. It uses weak gravitational lensing, which requires the accurate measurement of galaxy shapes over a large area in the sky. Radiation damage in the 36 Charge-Coupled Devices (CCDs) composing the Euclid visible imager focal plane has already been identified as a major contributor to the weak-lensing error budget; radiation-induced charge transfer inefficiency (CTI) distorts the galaxy images and introduces a bias in the galaxy shape measurement. We designed a laboratory experiment to project Euclid-like sky images onto an irradiated Euclid CCD. In this way – and for the first time – we are able to directly assess the effect of CTI on the Euclid weak-lensing measurement free of modelling uncertainties. We present here the experiment concept, setup, and first results. The results of such an experiment provide test data critical to refine models, design and test the Euclid data processing CTI mitigation scheme, and further optimize the Euclid CCD operation.
Proceedings of SPIE | 2004
Richard M. Ambrosi; Andrew D. Holland; Kallol Mukerjee; Adam Keay; Martin J. L. Turner; A. F. Abbey; Ian B. Hutchinson; Terry Ashton; Andrew P. Beardmore; Alexander Short; Peter J. Pool; David J. Burt; D. Vernon
The next generation of X-ray astronomy instruments will require position sensitive detectors in the form of charge coupled devices (CCDs) for X-ray spectroscopy and imaging that will have the ability to probe the X-ray universe with a greater efficiency. This will require the development of CCDs with structures that will improve on the quantum efficiency of the current state of the art over a broader spectral range in addition to reducing spectral features, which may affect spectral resolution and signal to background levels. These devices will also have to be designed to withstand the harsh radiation environments associated with orbits that extend beyond the Earth’s magnetosphere. The next generation X-ray telescopes will incorporate larger X-ray optics that will allow deeper observations of the X-ray universe and sensors will have to compensate for this by an increased readout speed. This study will aim to describe some of the results obtained from test CCD structures that may fit many of the requirements described above.
Proceedings of SPIE | 2012
Carlos Corral van Damme; Mark Ayre; David Lumb; Alexander Short; N. Rando
LOFT (Large Observatory For x-ray Timing) is one of four candidates for the M3 slot (launch in 2024, with the option of a launch in 2022) of ESAs Cosmic Vision 2015 – 2025 Plan, and as such it is currently undergoing an initial assessment phase lasting one year. The objective of the assessment phase is to provide the information required to enable the down selection process, in particular: the space segment definition for meeting the assigned science objectives; consideration of and initial definition of the implementation schedule; an estimate of the mission Cost at Completion (CaC); an evaluation of the technology readiness evaluation and risk assessment. The assessment phase is divided into two interleaved components: (i) A payload assessment study, performed by teams funded by member states, which is primarily intended for design, definition and programmatic/cost evaluation of the payload, and (ii) A system industrial study, which has essentially the same objectives for the space segment of the mission. This paper provides an overview of the status of the LOFT assessment phase, both for payload and platform. The initial focus is on the payload design status, providing the reader with an understanding of the main features of the design. Then the space segment assessment study status is presented, with an overview of the principal challenges presented by the LOFT payload and mission requirements, and a presentation of the expected solutions. Overall the mission is expected to enable cutting-edge science, is technically feasible, and should remain within the required CaC for an M3 candidate.
Acta Astronautica | 2008
Craig Brown; Aleksander Lyngvi; N. Rando; Alexander Short; Tone Peacock
Experimental Astronomy | 2006
Craig Brown; N. Rando; Alexander Short; Aleksander Lyngvi; Tone Peacock