Alexander V. Chernokulsky
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander V. Chernokulsky.
Advances in Meteorology | 2012
Alexander V. Chernokulsky; I. I. Mokhov
Total cloud fraction over the Arctic (north of 60°N) has been evaluated and intercompared based on 16 Arctic cloud climatologies from different satellite and surface observations and reanalyses. The Arctic annual-mean total cloud fraction is about 0.70±0.03 according to different observational data. It is greater over the ocean (0.74±0.04) and less over land (0.67±0.03). Different observations for total cloud fraction are in a better agreement in summer than in winter and over the ocean than over land. An interannual variability is higher in winter than in summer according to all observations. The Arctic total cloud fraction has a prominent annual cycle according to most of the observations. The time of its maximum concurs with the time of the sea ice extent minimum (early summer–late autumn) and vice versa (late spring). The main reason for the discrepancies among observations is the difference in the cloud-detection algorithms, especially when clouds are detected over the ice/snow surface (during the whole year) or over the regions with the presence of strong low-tropospheric temperature inversions (mostly in winter). Generally, reanalyses are not in a close agreement with satellite and surface observations of cloudiness in the Arctic.
Advances in Meteorology | 2012
Anthony R. Lupo; I. I. Mokhov; Merseid G. Akperov; Alexander V. Chernokulsky; H. Athar
During the summer of 2010, an unusually persistent blocking episode resulted in anomalously warm dry weather over the European part of Russia. The excessive heat resulted in forest and peat fires, impacted terrestrial ecosystems, greatly increased pollution in urban areas, and increased mortality rates in the region. Using the National Centers for Atmospheric Research (NCAR), National Centers for Environmental Prediction (NCEP) reanalysis datasets, the climatological and dynamic character of blocking events for summer 2010 and a precursor May blocking event were examined. We found that these events were stronger and longer lived than typical warm season events. Using dynamic methods, we demonstrate that the July 2010 event was a synoptic-scale dominant blocking event; unusual in the summer season. An analysis of phase diagrams demonstrated that the planetary-scale did not become stable until almost one week after block onset. For all other blocking events studied here and previously, the planetary-scale became stable around onset. Analysis using area integrated regional enstrophy (IRE) demonstrated that for the July 2010 event, synoptic-scale IRE increased at block onset. This was similar for the May 2010 event, but different from case studies examined previously that demonstrated the planetary-scale IRE was prominent at block onset.
Environmental Research Letters | 2011
Alexander V. Chernokulsky; Olga N. Bulygina; I. I. Mokhov
Changes of total and low cloud fraction and the occurrence of different cloud types over Russia were assessed. The analysis was based on visual observations from more than 1600 meteorological stations. Differences between the 2001–10 and 1991–2000 year ranges were evaluated. In general, cloud fraction has tended to increase during recent years. A major increase of total cloud fraction and a decrease of the number of days without clouds are revealed in spring and autumn mostly due to an increase of the occurrence of convective and non-precipitating stratiform clouds. In contrast, the occurrence of nimbostratus clouds has tended to decrease. In general, the ratio between the occurrence of cumulonimbus and nimbostratus clouds has increased for the period 2001–10 relative to 1991–2000. Over particular regions, a decrease of total cloud fraction and an increase of the number of days without clouds are noted.
Archive | 2013
Alexander I. Shiklomanov; Richard B. Lammers; Dennis P. Lettenmaier; Yuriy M. Polischuk; Oleg G. Savichev; Laurence C. Smith; Alexander V. Chernokulsky
This chapter looks at several aspects of the hydrological regime across Siberia using long-term historical data and model simulation results to provide a better understanding of ongoing changes and future directions. It begins with a survey of the major components of water balance: river flow, precipitation, and evapotranspiration. This is followed by the primary focus on the Siberian river systems with emphasis on annual variability and the anomalously high river discharge in 2007, the seasonality of river flow with increases in winter discharge, and changes in magnitude of minimum river flow and the temporal shifts in maximum river flow. Other components related to the river systems are also explored, including the thermal regime showing a lack of widespread evidence for increasing river temperature while the ice cover over the major rivers is decreasing in terms of both the duration of ice cover and ice thickness. Related hydrological conditions (e.g., groundwater hydrology) demonstrate an increase in both levels and temperatures; however, there is evidence for some local decreases in groundwater level. Additionally, increases in groundwater runoff from the taiga zone are observed. Total thermokarst lake area is changing, depending on the landscape zone. Northern zones of tundra are gaining lake area, while the southern tundra and taiga regions are losing lake area. This chapter concludes with a look at possible future changes in the region’s hydrology. River discharge in the major Siberian watersheds is expected to rise, and this result is consistent across a majority of the global climate models’ projections for the twenty-first century.
Regional Environmental Changes in Siberia and Their Global Consequences | 2013
Pavel Ya. Groisman; Tatiana A. Blyakharchuk; Alexander V. Chernokulsky; Maksim M. Arzhanov; Luca Belelli Marchesini; Esfir G. Bogdanova; Irena I. Borzenkova; Olga N. Bulygina; A. A. Karpenko; Lyudmila V. Karpenko; Richard W. Knight; Vyacheslav Khon; Georgiy N. Korovin; Anna V. Meshcherskaya; I. I. Mokhov; Elena I. Parfenova; Vyacheslav N. Razuvaev; Nina A. Speranskaya; Nadezhda M. Tchebakova; Natalia N. Vygodskaya
This chapter provides observational evidence of climatic variations in Siberia for three time scales: during the past 10,000 years, during the past millennium prior to instrumental observations, and for the past 130 years during the period of large-scale meteorological observations. The observational evidence is appended with the global climate model projections for the twenty-first century based on the most probable scenarios of the future dynamics of the major anthropogenic and natural factors responsible for contemporary climatic changes. Historically, climate of Siberia varied broadly. It was both warmer and colder than the present. However, during the past century, it became much warmer; the cold season precipitation north of 55°N increased, but no rainfall increase over most of Siberia has occurred. This led to drier summer conditions and to increased possibility of droughts and fire weather. Projections of the future climate indicate the further temperature increases, more in the cold season and less in the warm season, significant changes in the hydrological cycle in Central and southern Siberia (summer dryness), ecosystems’ shifts, and changes in the permafrost distribution and stability. Observed and projected frequencies of various extreme events have increased recently and are projected to further increase. While in the north of Siberia, contemporary models predict warmer winters at the end of the twenty-first century and paleoreconstructions hint to warmer summers compared to the present warming observed during the period of instrumental observations. These three groups of estimates are broadly consistent with each other.
Environmental Research Letters | 2013
Alexander V. Chernokulsky; I. I. Mokhov; Natalia Nikitina
This letter presents an assessment of winter cloudiness variability over Northern Eurasia regions related to the Siberian High intensity (SHI) variations during 1966‐2010. An analysis of cloud fraction and the occurrence of different cloud types was carried out based on visual observations from almost 500 Russian meteorological stations. The moonlight criterion was implemented to reduce the uncertainty of night observations. The SHI was defined based on sea-level pressure fields from different reanalyses. We found a statistically significant negative correlation of cloud cover with the SHI over central and southern Siberia and the southern Urals with regression coefficients around 3% hPa 1 for total cloud fraction (TCF) for particular stations near the Siberian High center. Cross-wavelet analysis of TCF and SHI revealed a long-term relationship between cloudiness and the Siberian High. Generally, the Siberian High intensification by 1 hPa leads to a replacement of one overcast day with one day without clouds, which is associated mainly with a decrease in precipitating and stratiform clouds. These changes point to a positive feedback between cloudiness and the Siberian High.
Journal of Climate | 2017
Alexander V. Chernokulsky; Igor Esau; Olga N. Bulygina; Richard Davy; I. I. Mokhov; Stephen Outten; Vladimir A. Semenov
AbstractA long-term climatology of cloudiness over the Norwegian, Barents, and Kara Seas (NBK) based on visual surface observations is presented. Annual mean total cloud cover (TCC) is almost equal over solid-ice (SI) and open-water (OW) regions of the NBK (73% ± 3% and 76% ± 2%, respectively). In general, TCC has higher intra- and interannual variability over SI than over OW. A decrease of TCC in the middle of the twentieth century and an increase in the last few decades was found at individual stations and for the NBK as a whole. In most cases these changes are statistically significant with magnitudes exceeding the data uncertainty that is associated with the surface observations. The most pronounced trends are observed in autumn when the largest changes to the sea ice concentration (SIC) occur. TCC over SI correlates significantly with SIC in the Barents Sea, with a statistically significant correlation coefficient between annual TCC and SIC of −0.38 for the period 1936–2013. Cloudiness over OW shows ...
Doklady Earth Sciences | 2017
Alexander V. Chernokulsky; M. V. Kurgansky; I. I. Mokhov
A simple index of convective instability (3D-index) is used for analysis of weather and climate processes that favor to the occurrence of severe convective events including tornadoes. The index is based on information on the surface air temperature and humidity. The prognostic ability of the index to reproduce severe convective events (thunderstorms, showers, tornadoes) is analyzed. It is shown that most tornadoes in North Eurasia are characterized by high values of the 3D-index; furthermore, the 3D-index is significantly correlated with the available convective potential energy. Reanalysis data (for recent decades) and global climate model simulations (for the 21st century) show an increase in the frequency of occurrence of favorable for tornado formation meteorological conditions in the regions of Northern Eurasia. The most significant increase is found on the Black Sea coast and in the south of the Far East.
Russian Meteorology and Hydrology | 2018
Alexander V. Chernokulsky; F. A. Kozlov; O. G. Zolina; O. N. Bulygina; Vladimir A. Semenov
A method for discriminating among different types of precipitation is presented. The method is based on surface observations of precipitation, present and past weather, and the morphological types of clouds. The climatology of showery, nonshowery, and drizzle precipitation in Northern Eurasia is studied using the data of 529 Russian weather stations for the period of 1966–2014. Showery precipitation dominates in Northern Eurasia. In general, showery precipitation has greater temporal (monthly and diurnal) and spatial variability than nonshowery precipitation. The majority of showers are registered in summer (the maximum is in July), whereas the high est total monthly nonshowery precipitation is observed in autumn (the maximum is in October). The daily intensity values of showery and nonshowery precipitation are generally close, the maximum intensity is recorded in July–August. For three-hour in tervals, the shower in tensity is by 1.1–1.5 times higher. The drawbacks of the presented methodology are discussed.
Izvestiya Atmospheric and Oceanic Physics | 2017
A. V. Eliseev; I. I. Mokhov; Alexander V. Chernokulsky
A module for simulating of natural fires (NFs) in the climate model of the A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS CM), is extended with respect to the influence of lightning activity and population density on the ignition frequency and fire suppression. The IAP RAS CM is used to perform numerical experiments in accordance with the conditions of the project that intercompares climate models, CMIP5 (Coupled Models Intercomparison Project, phase 5). The frequency of lightning flashes was assigned in accordance with the LIS/OTD satellite data. In the calculations performed, anthropogenic ignitions play an important role in NF occurrences, except for regions at subpolar latitudes and, to a lesser degree, tropical and subtropical regions. Taking into account the dependence of fire frequency on lightning activity and population density intensifies the influence of characteristics of natural fires on the climate changes in tropics and subtropics as compared to the version of the IAP RAS CM that does not take the influence of ignition sources on the large-scale characteristics of NFs into consideration.