Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander V. Chervonsky is active.

Publication


Featured researches published by Alexander V. Chervonsky.


Nature | 2008

Innate immunity and intestinal microbiota in the development of Type 1 diabetes

Li Wen; Ruth E. Ley; Pavel Volchkov; Peter B. Stranges; Lia Avanesyan; Austin C. Stonebraker; Changyun Hu; F. Susan Wong; Gregory L. Szot; Jeffrey A. Bluestone; Jeffrey I. Gordon; Alexander V. Chervonsky

Type 1 diabetes (T1D) is a debilitating autoimmune disease that results from T-cell-mediated destruction of insulin-producing β-cells. Its incidence has increased during the past several decades in developed countries, suggesting that changes in the environment (including the human microbial environment) may influence disease pathogenesis. The incidence of spontaneous T1D in non-obese diabetic (NOD) mice can be affected by the microbial environment in the animal housing facility or by exposure to microbial stimuli, such as injection with mycobacteria or various microbial products. Here we show that specific pathogen-free NOD mice lacking MyD88 protein (an adaptor for multiple innate immune receptors that recognize microbial stimuli) do not develop T1D. The effect is dependent on commensal microbes because germ-free MyD88-negative NOD mice develop robust diabetes, whereas colonization of these germ-free MyD88-negative NOD mice with a defined microbial consortium (representing bacterial phyla normally present in human gut) attenuates T1D. We also find that MyD88 deficiency changes the composition of the distal gut microbiota, and that exposure to the microbiota of specific pathogen-free MyD88-negative NOD donors attenuates T1D in germ-free NOD recipients. Together, these findings indicate that interaction of the intestinal microbes with the innate immune system is a critical epigenetic factor modifying T1D predisposition.


Cell | 1997

The Role of Fas in Autoimmune Diabetes

Alexander V. Chervonsky; Yi Wang; F. Susan Wong; Irene Visintin; Richard A. Flavell; Charles A. Janeway; Louis A. Matis

Immunologically privileged sites express Fas ligand (FasL), which protects them from attack by activated T cells that express Fas and die upon contact with FasL. In an attempt to protect nonobese diabetic mice (NOD) from autoimmune diabetes, we made FasL transgenic NOD mice using the beta cell-specific rat insulin-1 promoter. Surprisingly, these transgenic mice showed heightened sensitivity to diabetogenic T cells, which was due to self-destruction of beta cells upon T cell-mediated induction of Fas. Fas-negative NOD(lpr/lpr) animals were resistant to diabetogenic T cells and to spontaneous diabetes. Thus, induction of Fas expression on beta cells and their subsequent destruction constitutes the main pathogenic mechanism in autoimmune diabetes.


Immunity | 2010

In vivo requirement for Atg5 in antigen presentation by dendritic cells.

Heung Kyu Lee; Lisa M. Mattei; Benjamin E. Steinberg; Philipp Alberts; Yun Hee Lee; Alexander V. Chervonsky; Noboru Mizushima; Sergio Grinstein; Akiko Iwasaki

Autophagy is known to be important in presentation of cytosolic antigens on MHC class II (MHC II). However, the role of autophagic process in antigen presentation in vivo is unclear. Mice with dendritic cell (DC)-conditional deletion in Atg5, a key autophagy gene, showed impaired CD4(+) T cell priming after herpes simplex virus infection and succumbed to rapid disease. The most pronounced defect of Atg5(-/-) DCs was the processing and presentation of phagocytosed antigens containing Toll-like receptor stimuli for MHC class II. In contrast, cross-presentation of peptides on MHC I was intact in the absence of Atg5. Although induction of metabolic autophagy did not enhance MHC II presentation, autophagic machinery was required for optimal phagosome-to-lysosome fusion and subsequent processing of antigen for MHC II loading. Thus, our study revealed that DCs utilize autophagic machinery to optimally process and present extracellular microbial antigens for MHC II presentation.


Immunity | 2013

Gender Bias in Autoimmunity Is Influenced by Microbiota

Leonid Yurkovetskiy; Michael Burrows; Aly A. Khan; Laura Graham; Pavel Volchkov; Lev Becker; Dionysios A. Antonopoulos; Yoshinori Umesaki; Alexander V. Chervonsky

Gender bias and the role of sex hormones in autoimmune diseases are well established. In specific pathogen-free nonobese diabetic (NOD) mice, females have 1.3-4.4 times higher incidence of type 1 diabetes (T1D). Germ-free (GF) mice lost the gender bias (female-to-male ratio 1.1-1.2). Gut microbiota differed in males and females, a trend reversed by male castration, confirming that androgens influence gut microbiota. Colonization of GF NOD mice with defined microbiota revealed that some, but not all, lineages overrepresented in male mice supported a gender bias in T1D. Although protection of males did not correlate with blood androgen concentration, hormone-supported expansion of selected microbial lineages may work as a positive-feedback mechanism contributing to the sexual dimorphism of autoimmune diseases. Gene-expression analysis suggested pathways involved in protection of males from T1D by microbiota. Our results favor a two-signal model of gender bias, in which hormones and microbes together trigger protective pathways.


Nature | 2014

Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness.

Joseph M. Pickard; Corinne F. Maurice; Melissa A. Kinnebrew; Michael C. Abt; Dominik Schenten; Tatyana V. Golovkina; Said R. Bogatyrev; Rustem F. Ismagilov; Eric G. Pamer; Peter J. Turnbaugh; Alexander V. Chervonsky

Systemic infection induces conserved physiological responses that include both resistance and ‘tolerance of infection’ mechanisms. Temporary anorexia associated with an infection is often beneficial, reallocating energy from food foraging towards resistance to infection or depriving pathogens of nutrients. However, it imposes a stress on intestinal commensals, as they also experience reduced substrate availability; this affects host fitness owing to the loss of caloric intake and colonization resistance (protection from additional infections). We hypothesized that the host might utilize internal resources to support the gut microbiota during the acute phase of the disease. Here we show that systemic exposure to Toll-like receptor (TLR) ligands causes rapid α(1,2)-fucosylation of small intestine epithelial cells (IECs) in mice, which requires the sensing of TLR agonists, as well as the production of interleukin (IL)-23 by dendritic cells, activation of innate lymphoid cells and expression of fucosyltransferase 2 (Fut2) by IL-22-stimulated IECs. Fucosylated proteins are shed into the lumen and fucose is liberated and metabolized by the gut microbiota, as shown by reporter bacteria and community-wide analysis of microbial gene expression. Fucose affects the expression of microbial metabolic pathways and reduces the expression of bacterial virulence genes. It also improves host tolerance of the mild pathogen Citrobacter rodentium. Thus, rapid IEC fucosylation appears to be a protective mechanism that utilizes the host’s resources to maintain host–microbial interactions during pathogen-induced stress.


Science | 2011

Successful Transmission of a Retrovirus Depends on the Commensal Microbiota

Melissa Kane; Laure K. Case; Karyl S. Kopaskie; Alena Kozlova; Cameron MacDearmid; Alexander V. Chervonsky; Tatyana V. Golovkina

Commensal microflora promote the pathogenesis of mucosally acquired viruses. To establish chronic infections, viruses must develop strategies to evade the host’s immune responses. Many retroviruses, including mouse mammary tumor virus (MMTV), are transmitted most efficiently through mucosal surfaces rich in microbiota. We found that MMTV, when ingested by newborn mice, stimulates a state of unresponsiveness toward viral antigens. This process required the intestinal microbiota, as antibiotic-treated mice or germ-free mice did not transmit infectious virus to their offspring. MMTV-bound bacterial lipopolysaccharide triggered Toll-like receptor 4 and subsequent interleukin-6 (IL-6)–dependent induction of the inhibitory cytokine IL-10. Thus, MMTV has evolved to rely on the interaction with the microbiota to induce an immune evasion pathway. Together, these findings reveal the fundamental importance of commensal microbiota in viral infections.


Cell | 1992

Transgenic Mouse Mammary Tumor Virus Superantigen Expression Prevents Viral Infection

Tatyana V. Golovkina; Alexander V. Chervonsky; Jaquelin P. Dudley; Susan R. Ross

Endogenous mouse mammary tumor virus (MMTV) proviruses have recently been shown to cosegregate genetically with the minor lymphocyte-stimulating loci, also termed self-superantigens. The antigenic activity has been localized to the open reading frame (ORF) protein encoded in the long terminal repeat of MMTV. We show here that unlike their nontransgenic littermates, transgenic mice expressing high levels of an ORF protein derived from the C3H exogenous MMTV specifically delete their V beta 14+ T cells and do not become infected with this virus when it is present in their mothers milk. Thus, it appears that MMTV utilizes cells of the immune system in its infection pathway, and mice that retain endogenous MMTVs should be immune to infection by exogenous virus. These results offer possible new approaches to anti-viral therapy or immunization.


Immunity | 2002

Distinct Role of Surface Lymphotoxin Expressed by B Cells in the Organization of Secondary Lymphoid Tissues

Alexei V. Tumanov; Dmitry V. Kuprash; Maria A. Lagarkova; Sergei I. Grivennikov; Koichiro Abe; Alexander N. Shakhov; Ludmila N. Drutskaya; Colin L. Stewart; Alexander V. Chervonsky; Sergei A. Nedospasov

In order to definitively ascertain the functional contribution of lymphotoxin (LT) expressed by B cells, we produced mice with the LTbeta gene deleted from B cells (B-LTbeta KO mice). In contrast to systemic LTbeta deletion, in B-LTbeta KO mice only splenic microarchitecture was affected, while lymph nodes and Peyers patches (PP) were normal, except for PPs reduced size. Even though B-LTbeta KO spleens retained a small number of follicular dendritic cells (FDC) which appeared to be dependent on LTbeta produced by T cells, IgG responses to sheep red blood cells were markedly reduced. Thus, the organogenic function of B-LTbeta is almost entirely restricted to spleen, where it supports the correct lymphoid architecture that is critical for an effective humoral immune response.


Nature Immunology | 2003

Subversion of the innate immune system by a retrovirus.

Brooke A. Jude; Yelena Pobezinskaya; Jennifer Bishop; Susannah Parke; Ruslan Medzhitov; Alexander V. Chervonsky; Tatyana V. Golovkina

Retroviruses evolve rapidly to avoid the immune response of the infected host. We show here that the wild-type mouse mammary tumor virus MMTV(C3H) persisted indefinitely in C3H/HeN mice. However, it was rapidly lost in mice of the closely related C3H/HeJ strain and was replaced by a virus recombinant with an endogenous Mtv provirus. Maintenance of the wild-type virus was dependent on Toll-like receptor-4 (TLR4) signaling, which triggered production of the immunosuppressive cytokine interleukin-10. In the presence of mutant TLR4 in C3H/HeJ mice, wild-type virus was eliminated by the cytotoxic immune response, promoting selection of the immune escape recombinant MMTV variants. Thus, subversion of the innate immune system is yet another survival strategy used by retroviruses.


Journal of Clinical Investigation | 2010

Deletion of Fas in adipocytes relieves adipose tissue inflammation and hepatic manifestations of obesity in mice.

Stephan Wueest; Reto A. Rapold; Desiree M. Schumann; Julia M. Rytka; Anita Schildknecht; Ori Nov; Alexander V. Chervonsky; Assaf Rudich; Eugen J. Schoenle; Marc Y. Donath; Daniel Konrad

Adipose tissue inflammation is linked to the pathogenesis of insulin resistance. In addition to exerting death-promoting effects, the death receptor Fas (also known as CD95) can activate inflammatory pathways in several cell lines and tissues, although little is known about the metabolic consequence of Fas activation in adipose tissue. We therefore sought to investigate the contribution of Fas in adipocytes to obesity-associated metabolic dysregulation. Fas expression was markedly increased in the adipocytes of common genetic and diet-induced mouse models of obesity and insulin resistance, as well as in the adipose tissue of obese and type 2 diabetic patients. Mice with Fas deficiency either in all cells or specifically in adipocytes (the latter are referred to herein as AFasKO mice) were protected from deterioration of glucose homeostasis induced by high-fat diet (HFD). Adipocytes in AFasKO mice were more insulin sensitive than those in wild-type mice, and mRNA levels of proinflammatory factors were reduced in white adipose tissue. Moreover, AFasKO mice were protected against hepatic steatosis and were more insulin sensitive, both at the whole-body level and in the liver. Thus, Fas in adipocytes contributes to adipose tissue inflammation, hepatic steatosis, and insulin resistance induced by obesity and may constitute a potential therapeutic target for the treatment of insulin resistance and type 2 diabetes.

Collaboration


Dive into the Alexander V. Chervonsky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea J. Sant

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Konrad

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge