Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander Valent is active.

Publication


Featured researches published by Alexander Valent.


Journal of Biological Chemistry | 1999

Purification of a Novel Flavoprotein Involved in the Thyroid NADPH Oxidase CLONING OF THE PORCINE AND HUMAN cDNAs

Corinne Dupuy; Renée Ohayon; Alexander Valent; Marie-Sophie Noël-Hudson; Danielle Dème; Alain Virion

Hydrogen peroxide is the final electron acceptor for the biosynthesis of thyroid hormone catalyzed by thyroperoxidase at the apical surface of thyrocytes. Pig and human thyroid plasma membrane contain a Ca2+-dependent NAD(P)H oxidase that generates H2O2 by transferring electrons from NAD(P)H to molecular oxygen. We purified from pig thyroid plasma membrane a flavoprotein which constitutes the main, if not the sole, component of the thyroid NAD(P)H oxidase. Microsequences permitted the cloning of porcine and human full-length cDNAs encoding, respectively, 1207- and 1210-amino acid proteins with a predicted molecular mass of 138 kDa (p138Tox). Human and porcine p138Tox have 86.7% identity. The strongest similarity was to a predicted polypeptide encoded by a CaenorhabditiscDNA and with rbohA, a protein involved in theArabidopsis NADPH oxidase. p138Tox shows also similarity to the p65Mox and to the gp91Phox in their C-terminal region and have consensus sequences for FAD- and NADPH-binding sites. Compared with gp91Phox, p138Tox shows an extended N-terminal containing two EF-hand motifs that may account for its calcium-dependent activity, whereas three of four sequences implicated in the interaction of gp91Phox with the p47Phox cytosolic factor are absent in p138Tox. The expression of porcine p138Tox mRNA analyzed by Northern blot is specific of thyroid tissue and induced by cyclic AMP showing that p138Tox is a differentiation marker of thyrocytes. The gene of human p138Tox has been localized on chromosome 15q15.


Oncogene | 2004

Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy

Maria Castedo; Jean-Luc Perfettini; Thomas Roumier; Alexander Valent; Hana Raslova; Kenichi Yakushijin; David A. Horne; Jean Feunteun; Gilbert M. Lenoir; René H. Medema; William Vainchenker; Guido Kroemer

A conflict in cell cycle progression or DNA damage can lead to mitotic catastrophe when the DNA structure checkpoints are inactivated, for instance when the checkpoint kinase Chk2 is inhibited. Here we show that in such conditions, cells die during the metaphase of the cell cycle, as a result of caspase activation and subsequent mitochondrial damage. Molecular ordering of these phenomena reveals that mitotic catastrophe occurs in a p53-independent manner and involves a primary activation of caspase-2, upstream of cytochrome c release, followed by caspase-3 activation and chromatin condensation. Suppression of caspase-2 by RNA interference or pseudosubstrate inhibitors as well as blockade of the mitochondrial membrane permeabilization prevent the mitotic catastrophe and allow cells to further proceed the cell cycle beyond the metaphase, leading to asymmetric cell division. Heterokarya generated by the fusion of nonsynchronized cells can be driven to divide into three or more daughter cells when Chk2 and caspases are simultaneously inhibited. Such multipolar divisions, resulting from suppressed mitotic catastrophe, lead to the asymmetric distribution of cytoplasm (anisocytosis), DNA (anisokaryosis) and chromosomes (aneuploidy). Similarly, in a model of DNA damage-induced mitotic catastrophe, suppression of apoptosis leads to the generation of aneuploid cells. Our findings delineate a molecular pathway through which DNA damage, failure to arrest the cell cycle and inhibition of apoptosis can favor the occurrence of cytogenetic abnormalities that are likely to participate in oncogenesis.


Science | 2012

An immunosurveillance mechanism controls cancer cell ploidy

Laura Senovilla; Ilio Vitale; Isabelle Martins; Claire Pailleret; Mickaël Michaud; Lorenzo Galluzzi; Sandy Adjemian; Oliver Kepp; Mireia Niso-Santano; Shensi Shen; Guillermo Mariño; Alfredo Criollo; Alice Boilève; B. Job; Sylvain Ladoire; François Ghiringhelli; Antonella Sistigu; Takahiro Yamazaki; Santiago Rello-Varona; Clara Locher; Vichnou Poirier-Colame; Monique Talbot; Alexander Valent; Francesco Berardinelli; Antonio Antoccia; Fabiola Ciccosanti; Gian Maria Fimia; Mauro Piacentini; Antonio Fueyo; Nicole L. Messina

Keeping Cancer Cells At Bay Cancer cells are often aneuploid; that is, they have an abnormal number of chromosomes. But to what extent this contributes to the tumorigenic phenotype is not clear. Senovilla et al. (p. 1678; see the Perspective by Zanetti and Mahadevan) found that tetraploidization of cancer cells can cause them to become immunogenic and thus aid in their clearance from the body by the immune system. Cells with excess chromosomes put stress on the endoplasmic reticulum, which leads to movement of the protein calreticulin to the cell surface. Calreticulin exposure in turn caused recognition of cancer cells in mice by the host immune system. Thus, the immune system appears to serve a protective role in eliminating hyperploid cells that must be overcome to allow unrestricted growth of cancer cells. Polyploid cancer cells trigger an immune response owing to proteins aberrantly exposed on their outer surfaces. Cancer cells accommodate multiple genetic and epigenetic alterations that initially activate intrinsic (cell-autonomous) and extrinsic (immune-mediated) oncosuppressive mechanisms. Only once these barriers to oncogenesis have been overcome can malignant growth proceed unrestrained. Tetraploidization can contribute to oncogenesis because hyperploid cells are genomically unstable. We report that hyperploid cancer cells become immunogenic because of a constitutive endoplasmic reticulum stress response resulting in the aberrant cell surface exposure of calreticulin. Hyperploid, calreticulin-exposing cancer cells readily proliferated in immunodeficient mice and conserved their increased DNA content. In contrast, hyperploid cells injected into immunocompetent mice generated tumors only after a delay, and such tumors exhibited reduced DNA content, endoplasmic reticulum stress, and calreticulin exposure. Our results unveil an immunosurveillance system that imposes immunoselection against hyperploidy in carcinogen- and oncogene-induced cancers.


Journal of Clinical Oncology | 2009

Overall Genomic Pattern Is a Predictor of Outcome in Neuroblastoma

Isabelle Janoueix-Lerosey; Gudrun Schleiermacher; Evi Michels; Véronique Mosseri; Agnès Ribeiro; Delphine Lequin; Joëlle Vermeulen; Jérôme Couturier; Michel Peuchmaur; Alexander Valent; Dominique Plantaz; Hervé Rubie; Dominique Valteau-Couanet; Caroline Thomas; Valérie Combaret; Raphael Rousseau; Angelika Eggert; Jean Michon; Frank Speleman; Olivier Delattre

PURPOSE For a comprehensive overview of the genetic alterations of neuroblastoma, their association and clinical significance, we conducted a whole-genome DNA copy number analysis. PATIENTS AND METHODS A series of 493 neuroblastoma (NB) samples was investigated by array-based comparative genomic hybridization in two consecutive steps (224, then 269 patients). RESULTS Genomic analysis identified several types of profiles. Tumors presenting exclusively whole-chromosome copy number variations were associated with excellent survival. No disease-related death was observed in this group. In contrast, tumors with any type of segmental chromosome alterations characterized patients with a high risk of relapse. Patients with both numerical and segmental abnormalities clearly shared the higher risk of relapse of segmental-only patients. In a multivariate analysis, taking into account the genomic profile, but also previously described individual genetic and clinical markers with prognostic significance, the presence of segmental alterations with (HR, 7.3; 95% CI, 3.7 to 14.5; P < .001) or without MYCN amplification (HR, 4.5; 95% CI, 2.4 to 8.4; P < .001) was the strongest predictor of relapse; the other significant variables were age older than 18 months (HR, 1.8; 95% CI, 1.2 to 2.8; P = .004) and stage 4 (HR, 1.8; 95% CI, 1.2 to 2.7; P = .005). Finally, within tumors showing segmental alterations, stage 4, age, MYCN amplification, 1p and 11q deletions, and 1q gain were independent predictors of decreased overall survival. CONCLUSION The analysis of the overall genomic pattern, which probably unravels particular genomic instability mechanisms rather than the analysis of individual markers, is essential to predict relapse in NB patients. It adds critical prognostic information to conventional markers and should be included in future treatment stratification.


The EMBO Journal | 2010

Multipolar mitosis of tetraploid cells: inhibition by p53 and dependency on Mos

Ilio Vitale; Laura Senovilla; Mohamed Jemaà; Mickaël Michaud; Lorenzo Galluzzi; Oliver Kepp; Lisa Nanty; Alfredo Criollo; Santiago Rello-Varona; Gwenola Manic; Didier Métivier; Sonia Vivet; Nicolas Tajeddine; Nicholas Joza; Alexander Valent; Maria Castedo; Guido Kroemer

Tetraploidy can constitute a metastable intermediate between normal diploidy and oncogenic aneuploidy. Here, we show that the absence of p53 is not only permissive for the survival but also for multipolar asymmetric divisions of tetraploid cells, which lead to the generation of aneuploid cells with a near‐to‐diploid chromosome content. Multipolar mitoses (which reduce the tetraploid genome to a sub‐tetraploid state) are more frequent when p53 is downregulated and the product of the Mos oncogene is upregulated. Mos inhibits the coalescence of supernumerary centrosomes that allow for normal bipolar mitoses of tetraploid cells. In the absence of p53, Mos knockdown prevents multipolar mitoses and exerts genome‐stabilizing effects. These results elucidate the mechanisms through which asymmetric cell division drives chromosomal instability in tetraploid cells.


Journal of Clinical Oncology | 2010

Prognostic Impact of Gene Expression–Based Classification for Neuroblastoma

André Oberthuer; Barbara Hero; Frank Berthold; Dilafruz Juraeva; Andreas Faldum; Yvonne Kahlert; Shahab Asgharzadeh; Robert C. Seeger; Paola Scaruffi; Gian Paolo Tonini; Isabelle Janoueix-Lerosey; Olivier Delattre; Gudrun Schleiermacher; Jo Vandesompele; Joëlle Vermeulen; Franki Speleman; Rosa Noguera; Marta Piqueras; Jean Bénard; Alexander Valent; Smadar Avigad; Isaac Yaniv; Axel Weber; Holger Christiansen; Richard Grundy; Katharina Schardt; Manfred Schwab; Roland Eils; Patrick Warnat; Lars Kaderali

PURPOSE To evaluate the impact of a predefined gene expression-based classifier for clinical risk estimation and cytotoxic treatment decision making in neuroblastoma patients. PATIENTS AND METHODS Gene expression profiles of 440 internationally collected neuroblastoma specimens were investigated by microarray analysis, 125 of which were examined prospectively. Patients were classified as either favorable or unfavorable by a 144-gene prediction analysis for microarrays (PAM) classifier established previously on a separate set of 77 patients. PAM classification results were compared with those of current prognostic markers and risk estimation strategies. RESULTS The PAM classifier reliably distinguished patients with contrasting clinical courses (favorable [n = 249] and unfavorable [n = 191]; 5-year event free survival [EFS] 0.84 +/- 0.03 v 0.38 +/- 0.04; 5-year overall survival [OS] 0.98 +/- 0.01 v 0.56 +/- 0.05, respectively; both P < .001). Moreover, patients with divergent outcome were robustly discriminated in both German and international cohorts and in prospectively analyzed samples (P <or= .001 for both EFS and OS for each). In subgroups with clinical low-, intermediate-, and high-risk of death from disease, the PAM predictor significantly separated patients with divergent outcome (low-risk 5-year OS: 1.0 v 0.75 +/- 0.10, P < .001; intermediate-risk: 1.0 v 0.82 +/- 0.08, P = .042; and high-risk: 0.81 +/- 0.08 v 0.43 +/- 0.05, P = .001). In multivariate Cox regression models based on both EFS and OS, PAM was a significant independent prognostic marker (EFS: hazard ratio [HR], 3.375; 95% CI, 2.075 to 5.492; P < .001; OS: HR, 11.119, 95% CI, 2.487 to 49.701; P < .001). The highest potential clinical impact of the classifier was observed in patients currently considered as non-high-risk (n = 289; 5-year EFS: 0.87 +/- 0.02 v 0.44 +/- 0.07; 5-year OS: 1.0 v 0.80 +/- 0.06; both P < .001). CONCLUSION Gene expression-based classification using the 144-gene PAM predictor can contribute to improved treatment stratification of neuroblastoma patients.


Journal of Clinical Oncology | 2010

Accumulation of Segmental Alterations Determines Progression in Neuroblastoma

Gudrun Schleiermacher; Isabelle Janoueix-Lerosey; Agnès Ribeiro; Jerzy Klijanienko; Jérôme Couturier; Gaëlle Pierron; Véronique Mosseri; Alexander Valent; Nathalie Auger; Dominique Plantaz; Hervé Rubie; Dominique Valteau-Couanet; Franck Bourdeaut; Valérie Combaret; Christophe Bergeron; Jean Michon; Olivier Delattre

PURPOSE Neuroblastoma is characterized by two distinct types of genetic profiles, consisting of either numerical or segmental chromosome alterations. The latter are associated with a higher risk of relapse, even when occurring together with numerical alterations. We explored the role of segmental alterations in tumor progression and the possibility of evolution from indolent to aggressive genomic types. PATIENTS AND METHODS Array-based comparative genomic hybridization data of 394 neuroblastoma samples were analyzed and linked to clinical data. RESULTS Integration of ploidy and genomic data indicated that pseudotriploid tumors with mixed numerical and segmental profiles may be derived from pseudotriploid tumors with numerical alterations only. This was confirmed by the analysis of paired samples, at diagnosis and at relapse, as in tumors with a purely numerical profile at diagnosis additional segmental alterations at relapse were frequently observed. New segmental alterations at relapse were also seen in patients with segmental alterations at diagnosis. This was not linked to secondary effects of cytotoxic treatments since it occurred even in patients treated with surgery alone. A higher number of chromosome breakpoints were correlated with advanced age at diagnosis, advanced stage of disease, with a higher risk of relapse, and a poorer outcome. CONCLUSION These data provide further evidence of the role of segmental alterations, suggesting that tumor progression is linked to the accumulation of segmental alterations in neuroblastoma. This possibility of genomic evolution should be taken into account in treatment strategies of low- and intermediate-risk neuroblastoma and should warrant biologic reinvestigation at the time of relapse.


Journal of Clinical Oncology | 2009

Candidate Genes on Chromosome 9q33-34 Involved in the Progression of Childhood Ependymomas

Stéphanie Puget; Jacques Grill; Alexander Valent; Ivan Bièche; Carmela Dantas-Barbosa; Audrey Kauffmann; Philippe Dessen; Ludovic Lacroix; Birgit Geoerger; Bastien Job; Clemens Dirven; Pascale Varlet; Mathieu Peyre; Peter Dirks; Christian Sainte-Rose; Gilles Vassal

PURPOSE The molecular pathogenesis of pediatric ependymoma remains unclear. Our study was designed to identify genetic changes implicated in ependymoma progression. PATIENTS AND METHODS We characterized 59 ependymoma samples (33 at diagnosis and 26 at relapse) using array-comparative genomic hybridization (aCGH). Specific chromosomal imbalances were confirmed by fluorescent in situ hybridization, and candidate genes were assessed by real-time quantitative polymerase chain reaction (qPCR), immunohistochemistry, sequencing, and in vitro functional studies. RESULTS aCGH analysis revealed a significant increase in genomic imbalances on relapse compared with diagnosis, such as gain of 9qter and 1q (54% v 21% and 12% v 0%, respectively) and loss of 6q (27% v 6%). Supervised tumor classification showed that gain of 9qter was associated with tumor recurrence, age older than 3 years, and posterior fossa location. Using a candidate-gene strategy, we found an overexpression of two potential oncogenes at the locus 9qter: Tenascin-C and Notch1. Moreover, Notch pathway analysis (qPCR) revealed overexpression of Notch ligands, receptors, and target genes (Hes-1, Hey2, and c-Myc), and downregulation of Notch repressor Fbxw7. We confirmed by immunohistochemistry the overexpression of Tenascin-C and Hes-1. We detected Notch1 missense mutations in 8.3% of the tumors (only in the posterior fossa location and in case of 9q33-34 gain). Furthermore, inhibition of Notch pathway with a gamma-secretase inhibitor impaired the growth of ependymoma stem cell cultures. CONCLUSION The activation of the Notch pathway and Tenascin-C seem to be important events in ependymoma progression and may represent future targets for therapy. We report, to our knowledge for the first time, recurrent oncogenic mutations in pediatric posterior fossa ependymomas.


Oncogene | 2003

Screening for TP53 rearrangements in families with the Li-Fraumeni syndrome reveals a complete deletion of the TP53 gene.

Gaëlle Bougeard; Laurence Brugières; Agnès Chompret; Paul Gesta; Françoise Charbonnier; Alexander Valent; Cosette Martin; Grégory Raux; Jean Feunteun; Brigitte Bressac-de Paillerets; Thierry Frebourg

The absence of detectable germline TP53 mutations in a fraction of families with Li–Fraumeni syndrome (LFS) has suggested the involvement of other genes, but this hypothesis remains controversial. The density of Alu repeats within the TP53 gene led us to search genomic rearrangements of TP53 in families without detectable TP53 mutation. To this aim, we adapted the quantitative multiplex PCR of short fluorescent fragments (QMPSF) method to the analysis of the 11 exons of TP53. We analysed 98 families, either fulfilling (six families) or partially meeting (92 families) the criteria for LFS, and in which classical methods had failed to reveal TP53 alterations. We identified, in a large family fulfilling the criteria for LFS, a complete heterozygous deletion of TP53. Additional QMPSF analyses indicated that this deletion, which partially removed the centromeric FLJ10385 locus, covered approximately 45 kb. This deletion was shown to result from a complex rearrangement involving two distinct Alu-mediated recombinations. We conclude that TP53 germline rearrangements occur as rare events, but must be considered in LFS families without detectable point TP53 mutation.


Molecular Oncology | 2008

MYCN-non-amplified metastatic neuroblastoma with good prognosis and spontaneous regression: a molecular portrait of stage 4S.

Jean Bénard; Gilda Raguénez; Audrey Kauffmann; Alexander Valent; Hugues Ripoche; Virginie Joulin; B. Job; Gisèle Danglot; Sabrina Cantais; Thomas Robert; Marie-José Terrier-Lacombe; Agnès Chassevent; Serge Koscielny; Matthias Fischer; Frank Berthold; Marc Lipinski; Thomas Tursz; Philippe Dessen; Vladimir Lazar; Dominique Valteau-Couanet

Stage 4 neuroblastoma (NB) are heterogeneous regarding their clinical presentations and behavior. Indeed infants (stage 4S and non‐stage 4S of age <365days at diagnosis) show regression contrasting with progression in children (>365days). Our study aimed at: (i) identifying age‐based genomic and gene expression profiles of stage 4 NB supporting this clinical stratification; and (ii) finding a stage 4S NB signature. Differential genome and transcriptome analyses of a learning set of MYCN‐non amplified stage 4 NB tumors at diagnosis (n=29 tumors including 12 stage 4S) were performed using 1Mb BAC microarrays and Agilent 22K probes oligo‐microarrays. mRNA chips data following filtering yielded informative genes before supervised hierarchical clustering to identify relationship among tumor samples. After confirmation by quantitative RT‐PCR, a stage 4S NBs gene cluster was obtained and submitted to a validation set (n=22 tumors). Genomic abnormalities of infants tumors (whole chromosomes gains or loss) differ radically from that of children (intra‐chromosomal rearrangements) but could not discriminate infants with 4S from those without this presentation. In contrast, differential gene expression by looking at both individual genes and whole biological pathways leads to a molecular stage 4S NB portrait which provides new biological clues about this fascinating entity.

Collaboration


Dive into the Alexander Valent's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Bénard

Institut Gustave Roussy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacques Bosq

Institut Gustave Roussy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge