Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander Valishev is active.

Publication


Featured researches published by Alexander Valishev.


Physical Review Letters | 2011

Collimation with Hollow Electron Beams

G. Stancari; Alexander Valishev; G. Annala; G. Kuznetsov; V. Shiltsev; D. A. Still; L. G. Vorobiev

A novel concept of controlled halo removal for intense high-energy beams in storage rings and colliders is presented. It is based on the interaction of the circulating beam with a 5-keV, magnetically confined, pulsed hollow electron beam in a 2-m-long section of the ring. The electrons enclose the circulating beam, kicking halo particles transversely and leaving the beam core unperturbed. By acting as a tunable diffusion enhancer and not as a hard aperture limitation, the hollow electron beam collimator extends conventional collimation systems beyond the intensity limits imposed by tolerable losses. The concept was tested experimentally at the Fermilab Tevatron proton-antiproton collider. The first results on the collimation of 980-GeV antiprotons are presented.


Journal of Instrumentation | 2011

Tevatron Beam Halo Collimation System: Design, Operational Experience and New Methods

N. Mokhov; J Annala; R. Carrigan; M Church; A Drozhdin; T. Johnson; R Reilly; V. Shiltsev; G. Stancari; D. Still; Alexander Valishev; X L Zhang; V. Zvoda

Collimation of proton and antiproton beams in the Tevatron collider is required to protect CDF and D0 detectors and minimize their background rates, to keep irradiation of superconducting magnets under control, to maintain long-term operational reliability, and to reduce the impact of beam-induced radiation on the environment. In this article we briefly describe the design, practical implementation and performance of the collider collimation system, methods to control transverse and longitudinal beam halo and two novel collimation techniques tested in the Tevatron.


Proceedings of the 2005 Particle Accelerator Conference | 2005

Lifetrac Code for the Weak-Strong Simulation of the Beam-Beam Effects in Tevatron

Dmitry Shatilov; Yuri Alexahin; Valeri Lebedev; Alexander Valishev

A package of programs for weak-strong simulation of beam-beam effects in hadron colliders is described. Accelerator optics parameters relevant to the simulation are derived from beam measurements and calculations are made using OptiM optics code. The key part of the package is the upgraded version of the LIFETRAC code which now includes 2D coupled optics, chromatic modulation of beta-functions, non-Gaussian shape of the strong bunches and non-linear elements for beam-beam compensation. Parallel computations are used and in the case of the Tevatron (2 main IPs + 70 parasitic IPs) the code has a productivity of ∼ 1010particles×turns/day on a 32-node cluster of Pentium-IV 1.8 GHz processors.


arXiv: Accelerator Physics | 2014

Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

G. Stancari; Alexander Valishev; Valentina Previtali; Roderik Bruce; Stefano Redaelli; A Rossi; Belén Salvachua Ferrando

Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. Within the US LHC Accelerator Research Program (LARP) and the European FP7 HiLumi LHC Design Study, we are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. The expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were checked to ensure that undesired effects were suppressed. Hardware specifications were based on the Tevatron devices and on preliminary engineering integration studies in the LHC machine. Required resources and a possible timeline were also outlined, together with a brief discussion of alternative haloremoval schemes and of other possible uses of electron lenses to improve the performance of the LHC.


Journal of Instrumentation | 2012

Simulation of Beam-beam Effects and Tevatron Experience

Alexander Valishev; Yu. Alexahin; V. Lebedev; D. Shatilov

Effects of electromagnetic interactions of colliding bunches in the Tevatron had a variety of manifestations in beam dynamics presenting vast opportunities for development of simulation models and tools. In this paper the computer code for simulation of weak-strong beam-beam effects in hadron colliders is described. We report the collider operational experience relevant to beam-beam interactions, explain major effects limiting the collider performance and compare results of observations and measurements with simulations.


Journal of Instrumentation | 2017

IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program

Sergei Antipov; Daniel Broemmelsiek; David Bruhwiler; Dean Edstrom; Elvin Harms; V. Lebedev; Jerry Leibfritz; S. Nagaitsev; Chong Shik Park; Henryk Piekarz; P. Piot; Eric Prebys; Alexander Romanov; J. Ruan; Tanaji Sen; G. Stancari; Charles Thangaraj; R. Thurman-Keup; Alexander Valishev; V. Shiltsev

The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. The physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.


Archive | 2014

HOW TO MAXIMIZE THE HL-LHC PERFORMANCE *

G. Arduini; D. Banfi; Javier Barranco; Hannes Bartosik; Roderik Bruce; O. Brüning; R. Calaga; F. Cerutti; H. Damerau; R. De Maria; Luigi Salvatore Esposito; S. Fartoukh; M. Fitterer; R. Garoby; S. Gilardoni; M. Giovannozzi; B. Goddard; B. Gorini; M. Lamont; E. Métral; Nicolas Mounet; Stefano Redaelli; L. Rossi; G. Rumolo; E. Todesco; R Tomas; F. Zimmermann; Alexander Valishev

This contribution presents an overview of the parameter space for the HL-LHC [1] upgrade options that would maximize the LHC performance after LS3. The analysis is assuming the baseline HL-LHC upgrade options including among others, 25ns spacing, LIU [2] parameters, large aperture triplet and matching-section magnets, as well as crab cavities. The analysis then focuses on illustrations of the transmission efficiency of the LIU beam parameters from the injection process to stable conditions for physics, the minimization of the luminous region volume while preserving at the same time the separation of multiple vertices, the luminosity control mechanisms to extend the duration of the most efficient data taking conditions together with the associated concerns (machine efficiency, beam instabilities, halo population, cryogenic load, and beam dump frequency) and risks (failure scenarios, and radiation damage). In conclusion the expected integrated luminosity per fill and year is presented.


Archive | 2014

PICs: what do we gain in beam performance

G. Arduini; D. Banfi; Javier Barranco; Roderik Bruce; O. Brüning; R. De Maria; O. Dominguez; P. Fessia; M. Fitterer; S. Gilardoni; M. Giovannozzi; B. Gorini; Giovanni Iadarola; V. Kain; M. Kuhn; E. Métral; Nicolas Mounet; Stefano Redaelli; L. Rossi; G. Rumolo; R Tomas; J. Wenninger; Alexander Valishev

The beam parameters in the LHC resulting from the Performance Improvement Consolidation (PIC) activities presented in (1)(2) will be briefly recalled and motivated assuming that LINAC4 will be operational as PS-Booster Injector. The corresponding limitations in the LHC are outlined. Based on the above performance an estimate of the LHC yearly integrated luminosity will be provided. The evaluation of the need and extent of the performance and reliability improvement for some of the PIC items might imply additional information: the necessary machine studies and the specific operational experience required during Run 2 will be summarized.


Physical Review Special Topics-accelerators and Beams | 2010

Fully 3D Multiple Beam Dynamics Processes Simulation for the Tevatron

E. G. Stern; James Amundson; P. Spentzouris; Alexander Valishev

The Fermilab Tevatron has been, until 2010, the premier high-energy physics collider in the world. The data collected over the last decade by high-energy physics experiments running at the Tevatron have been analyzed to make important measurements in fundamental areas such as B meson masses and flavor oscillation, searches for the Higgs boson, and supersymmetry. Collecting these data at the limits of detectability has required the Tevatron to operate reliably at high beam intensities to maximize the number of collisions to analyze. This impressive achievement has been assisted by the use of HPC resources and software provided through the SciDAC program. This paper describes the enhancements to the BeamBeam3d code to realistically simulate the Tevatron, the validation of these simulations, and the improvement in equipment reliability and personal safety achieved with the aid of simulations.We discuss the multipolar expansion of the electromagnetic field with an emphasis on the radiated field. We investigate if the employment of Jefimenkos equations brings a new insight into the calculation of the radiation field. We show that the affirmation is valid if one finds an interesting example in which inverting the order between spatial derivatives and integration is not allowed. Further, we consider the generalization of the multipolar expansion of the power radiated by a confined system of charges and currents to a higher arbitrary order.


Proceedings of the 2005 Particle Accelerator Conference | 2005

Computational Study of the Beam-Beam Effect in Tevatron Using the Lifetrac Code

Alexander Valishev; Yuri Alexahin; Valeri Lebedev; Dmitry Shatilov

Results of a comprehensive numerical study of the beam-beam effect in the Tevatron are presented including the dependence of the luminosity lifetime on the tunes, chromaticity and optics errors. These results help to understand the antiproton emittance blow-up routinely observed in the Tevatron after the beams are brought into collision. To predict a long term luminosity evolution, the diffusion rates are increased to represent long operation time (∼day) by using a small number of simulated turns. To justify this approach, a special simulation study of interplay between nonlinear beam-beam resonances and diffusion has been conducted. A number of ways to mitigate the beam-beam effects are discussed, such as increasing bunch spacing, separation between the beams and beam-beam compensation with electron lenses.

Collaboration


Dive into the Alexander Valishev's collaboration.

Researchain Logo
Decentralizing Knowledge