Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander W. E. Franz is active.

Publication


Featured researches published by Alexander W. E. Franz.


Viruses | 2015

Tissue Barriers to Arbovirus Infection in Mosquitoes

Alexander W. E. Franz; Asher M. Kantor; A. Passarelli; Rollie J. Clem

Arthropod-borne viruses (arboviruses) circulate in nature between arthropod vectors and vertebrate hosts. Arboviruses often cause devastating diseases in vertebrate hosts, but they typically do not cause significant pathology in their arthropod vectors. Following oral acquisition of a viremic bloodmeal from a vertebrate host, the arbovirus disease cycle requires replication in the cellular environment of the arthropod vector. Once the vector has become systemically and persistently infected, the vector is able to transmit the virus to an uninfected vertebrate host. In order to systemically infect the vector, the virus must cope with innate immune responses and overcome several tissue barriers associated with the midgut and the salivary glands. In this review we describe, in detail, the typical arbovirus infection route in competent mosquito vectors. Based on what is known from the literature, we explain the nature of the tissue barriers that arboviruses are confronted with in a mosquito vector and how arboviruses might surmount these barriers. We also point out controversial findings to highlight particular areas that are not well understood and require further research efforts.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Vulnerability of primitive human placental trophoblast to Zika virus

Megan A. Sheridan; Dinar Yunusov; Velmurugan Balaraman; Andrei P. Alexenko; Shinichiro Yabe; Sergio Verjovski-Almeida; Danny J. Schust; Alexander W. E. Franz; Yoel Sadovsky; Toshihiko Ezashi; R. Michael Roberts

Significance We have tested the hypothesis that the placenta of early pregnancy might be more easily breached by the Zika virus (ZIKV) than the relatively resistant outer cells of the mature placenta. Colonies of placental lineage cells derived from embryonic stem cells, which are probably analogous to the primitive placenta at implantation, were lysed more rapidly by an African strain of ZIKV, considered relatively benign, than by an Asian strain linked to fetal brain abnormalities. We conclude that the human fetus may be most vulnerable to ZIKV very early in pregnancy and that the African strain may threaten a pregnancy more strongly than previously believed. Infection of pregnant women by Asian lineage strains of Zika virus (ZIKV) has been linked to brain abnormalities in their infants, yet it is uncertain when during pregnancy the human conceptus is most vulnerable to the virus. We have examined two models to study susceptibility of human placental trophoblast to ZIKV: cytotrophoblast and syncytiotrophoblast derived from placental villi at term and colonies of trophoblast differentiated from embryonic stem cells (ESC). The latter appear to be analogous to the primitive placenta formed during implantation. The cells from term placentas, which resist infection, do not express genes encoding most attachment factors implicated in ZIKV entry but do express many genes associated with antiviral defense. By contrast, the ESC-derived trophoblasts possess a wide range of attachment factors for ZIKV entry and lack components of a robust antiviral response system. These cells, particularly areas of syncytiotrophoblast within the colonies, quickly become infected, produce infectious virus and undergo lysis within 48 h after exposure to low titers (multiplicity of infection > 0.07) of an African lineage strain (MR766 Uganda: ZIKVU) considered to be benign with regards to effects on fetal development. Unexpectedly, lytic effects required significantly higher titers of the presumed more virulent FSS13025 Cambodia (ZIKVC). Our data suggest that the developing fetus might be most vulnerable to ZIKV early in the first trimester before a protective zone of mature villous trophoblast has been established. Additionally, MR766 is highly trophic toward primitive trophoblast, which may put the early conceptus of an infected mother at high risk for destruction.


PLOS Neglected Tropical Diseases | 2014

Fitness Impact and Stability of a Transgene Conferring Resistance to Dengue-2 Virus following Introgression into a Genetically Diverse Aedes aegypti Strain

Alexander W. E. Franz; Irma Sanchez-Vargas; Robyn R. Raban; William C. Black; Anthony A. James; Ken E. Olson

In 2006, we reported a mariner (Mos1)-transformed Aedes aegypti line, Carb77, which was highly resistant to dengue-2 virus (DENV2). Carb77 mosquitoes expressed a DENV2-specific inverted-repeat (IR) RNA in midgut epithelial cells after ingesting an infectious bloodmeal. The IR-RNA formed double-stranded DENV2-derived RNA, initiating an intracellular antiviral RNA interference (RNAi) response. However, Carb77 mosquitoes stopped expressing the IR-RNA after 17 generations in culture and lost their DENV2-refractory phenotype. In the current study, we generated new transgenic lines having the identical transgene as Carb77. One of these lines, Carb109M, has been genetically stable and refractory to DENV2 for >33 generations. Southern blot analysis identified two transgene integration sites in Carb109M. Northern blot analysis detected abundant, transient expression of the IR-RNA 24 h after a bloodmeal. Carb109M mosquitoes were refractory to different DENV2 genotypes but not to other DENV serotypes. To further test fitness and stability, we introgressed the Carb109M transgene into a genetically diverse laboratory strain (GDLS) by backcrossing for five generations and selecting individuals expressing the transgenes EGFP marker in each generation. Comparison of transgene stability in replicate backcross 5 (BC5) lines versus BC1 control lines demonstrated that backcrossing dramatically increased transgene stability. We subjected six BC5 lines to five generations of selection based on EGFP marker expression to increase the frequency of the transgene prior to final family selection. Comparison of the observed transgene frequencies in the six replicate lines relative to expectations from Fishers selection model demonstrated lingering fitness costs associated with either the transgene or linked deleterious genes. Although minimal fitness loss (relative to GDLS) was manifest in the final family selection stage, we were able to select homozygotes for the transgene in one family, Carb109M/GDLS.BC5.HZ. This family has been genetically stable and DENV2 refractory for multiple generations. Carb109M/GDLS.BC5.HZ represents an important line for testing proof-of-principle vector population replacement.


Scientific Reports | 2016

Infection pattern and transmission potential of chikungunya virus in two New World laboratory-adapted Aedes aegypti strains.

Shengzhang Dong; Asher M. Kantor; Jingyi Lin; A. Lorena Passarelli; Rollie J. Clem; Alexander W. E. Franz

Chikungunya virus (CHIKV) is an emerging mosquito-borne virus belonging to the Togaviridae, which is transmitted to humans by Aedes aegypti and Ae. albopictus. We describe the infection pattern of CHIKV in two New World Ae. aegypti strains, HWE and ORL. Both mosquito strains were susceptible to the virus but showed different infection patterns in midguts and salivary glands. Even though acquisition of a bloodmeal showed moderate levels of apoptosis in midgut tissue, there was no obvious additional CHIKV-induced apoptosis detectable during midgut infection. Analysis of expression of apoptosis-related genes suggested that CHIKV infection dampens rather than promotes apoptosis in the mosquito midgut. In both mosquito strains, the virus was present in saliva within two days post-oral infection. HWE and ORL mosquitoes exhibited no salivary gland infection barrier; however, only 60% (HWE) to 65% (ORL) of the females had released the virus in their saliva at one week post-oral acquisition, suggesting a salivary gland escape barrier. CHIKV induced an apoptotic response in salivary glands of HWE and ORL mosquitoes, demonstrating that the virus caused pathology in its natural vector.


Current tropical medicine reports | 2014

Novel Genetic and Molecular Tools for the Investigation and Control of Dengue Virus Transmission by Mosquitoes

Alexander W. E. Franz; Rollie J. Clem; A. Lorena Passarelli

Aedes aegypti is the principal vector of dengue virus (DENV) throughout the tropical world. This anthropophilic mosquito species needs to be persistently infected with DENV before it can transmit the virus through its saliva to a new vertebrate host. In the mosquito, DENV is confronted with several innate immune pathways, among which RNA interference is considered the most important. The Ae. aegypti genome project opened the doors for advanced molecular studies on pathogen–vector interactions, including genetic manipulation of the vector for basic research and vector control purposes. Thus, Ae. aegypti has become the primary model for studying vector competence for arboviruses at the molecular level. Here, we present recent findings regarding DENV–mosquito interactions, emphasizing how innate immune responses modulate DENV infections in Ae. aegypti. We also describe the latest advancements in genetic manipulation of Ae. aegypti and discuss how this technology can be used to investigate vector transmission of DENV at the molecular level and to control transmission of the virus in the field.


BMC Genomics | 2017

The midgut transcriptome of Aedes aegypti fed with saline or protein meals containing chikungunya virus reveals genes potentially involved in viral midgut escape

Shengzhang Dong; Susanta K. Behura; Alexander W. E. Franz

BackgroundThe mosquito Aedes aegypti is the primary vector for medically important arthropod-borne viruses, including chikungunya virus (CHIKV). Following oral acquisition, an arbovirus has to persistently infect several organs in the mosquito before becoming transmissible to another vertebrate host. A major obstacle an arbovirus has to overcome during its infection cycle inside the mosquito is the midgut escape barrier, representing the exit mechanism arboviruses utilize when disseminating from the midgut. To understand the transcriptomic basis of midgut escape and to reveal genes involved in the process, we conducted a comparative transcriptomic analysis of midgut samples from mosquitoes which had received a saline meal (SM) or a protein meal (PM) (not) containing CHIKV.ResultsCHIKV which was orally acquired by a mosquito along with a SM or PM productively infected the midgut epithelium and disseminated to secondary tissues. A total of 27 RNA-Seq libraries from midguts of mosquitoes that had received PM or SM (not) containing CHIKV at 1 and 2 days post-feeding were generated and sequenced. Fewer than 80 genes responded differentially to the presence of CHIKV in midguts of mosquitoes that had acquired the virus along with SM or PM. SM feeding induced differential expression (DE) of 479 genes at day 1 and 314 genes at day 2 when compared to midguts of sugarfed mosquitoes. By comparison, PM feeding induced 6029 DE genes at day 1 and 7368 genes at day 2. Twenty-three DE genes encoding trypsins, metalloproteinases, and serine-type endopeptidases were significantly upregulated in midguts of mosquitoes at day 1 following SM or PM ingestion. Two of these genes were Ae. aegypti late trypsin (AeLT) and serine collagenase 1 precursor (AeSP1). In vitro, recombinant AeLT showed strong matrix metalloproteinase activity whereas recombinant AeSP1 did not.ConclusionsBy substituting a bloodmeal for SM, we identified midgut-expressed genes not involved in blood or protein digestion. These included genes coding for trypsins, metalloproteinases, and serine-type endopeptidases, which could be involved in facilitating midgut escape for arboviruses in Ae. aegypti. The presence of CHIKV in any of the ingested meals had relatively minor effects on the overall gene expression profiles in midguts.


Insect Molecular Biology | 2017

Identification and initial characterization of matrix metalloproteinases in the yellow fever mosquito, Aedes aegypti

Asher M. Kantor; Shengzhang Dong; E. Ishimwe; A. Passarelli; Rollie J. Clem; Alexander W. E. Franz

Aedes aegypti is a major vector for arboviruses such as dengue, chikungunya and Zika viruses. During acquisition of a viremic bloodmeal, an arbovirus infects mosquito midgut cells before disseminating to secondary tissues, including the salivary glands. Once virus is released into the salivary ducts it can be transmitted to another vertebrate host. The midgut is surrounded by a basal lamina (BL) in the extracellular matrix, consisting of a proteinaceous mesh composed of collagen IV and laminin. BL pore size exclusion limit prevents virions from passing through. Thus, the BL probably requires remodelling via enzymatic activity to enable efficient virus dissemination. Matrix metalloproteinases (MMPs) are extracellular endopeptidases that are involved in remodelling of the extracellular matrix. Here, we describe and characterize the nine Ae. aegypti encoded MMPs, AeMMPs 1−9, which share common features with other invertebrate and vertebrate MMPs. Expression profiling in Ae. aegypti revealed that Aemmp4 and Aemmp6 were upregulated during metamorphosis, whereas expression of Aemmp1 and Aemmp2 increased during bloodmeal digestion. Aemmp1 expression was also upregulated in the presence of a bloodmeal containing chikungunya virus. Using polyclonal antibodies, AeMMP1 and AeMMP2 were specifically detected in tissues associated with the mosquito midgut.


PLOS Neglected Tropical Diseases | 2017

Chikungunya virus dissemination from the midgut of Aedes aegypti is associated with temporal basal lamina degradation during bloodmeal digestion

Shengzhang Dong; Velmurugan Balaraman; Asher M. Kantor; Jingyi Lin; DeAna G. Grant; Alexander W. E. Franz

In the mosquito, the midgut epithelium is the initial tissue to become infected with an arthropod-borne virus (arbovirus) that has been acquired from a vertebrate host along with a viremic bloodmeal. Following its replication in midgut epithelial cells, the virus needs to exit the midgut and infect secondary tissues including the salivary glands before it can be transmitted to another vertebrate host. The viral exit mechanism from the midgut, the midgut escape barrier (MEB), is poorly understood although it is an important determinant of mosquito vector competence for arboviruses. Using chikungunya virus (CHIKV) as a model in Aedes aegypti, we demonstrate that the basal lamina (BL) of the extracellular matrix (ECM) surrounding the midgut constitutes a potential barrier for the virus. The BL, predominantly consisting of collagen IV and laminin, becomes permissive during bloodmeal digestion in the midgut lumen. Bloodmeal digestion, BL permissiveness, and CHIKV dissemination are coincident with increased collagenase activity, diminished collagen IV abundance, and BL shredding in the midgut between 24–32 h post-bloodmeal. This indicates that there may be a window-of-opportunity during which the MEB in Ae. aegypti becomes permissive for CHIKV. Matrix metalloproteinases (MMPs) are the principal extracellular endopeptidases responsible for the degradation/remodeling of the ECM including the BL. We focused on Ae. aegypti (Ae)MMP1, which is expressed in midgut epithelial cells, is inducible upon bloodfeeding, and shows collagenase (gelatinase) activity. However, attempts to inhibit AeMMP activity in general or specifically that of AeMMP1 did not seem to affect its function nor produce an altered midgut escape phenotype. As an alternative, we silenced and overexpressed the Ae. aegypti tissue inhibitor of metalloproteinases (AeTIMP) in the mosquito midgut. AeTIMP was highly upregulated in the midgut during bloodmeal digestion and was able to inhibit MMP activity in vitro. Bloodmeal-inducible, midgut-specific overexpression of AeTIMP or its expression via a recombinant CHIKV significantly increased midgut dissemination rates of the virus. Possibly, AeTIMP overexpression affected BL degradation and/or restoration thereby increasing the midgut dissemination efficiency of the virus.


PLOS ONE | 2013

Subgenomic reporter RNA system for detection of alphavirus infection in mosquitoes.

J. Jordan Steel; Alexander W. E. Franz; Irma Sanchez-Vargas; Ken E. Olson; Brian J. Geiss

Current methods for detecting real-time alphavirus (Family Togaviridae) infection in mosquitoes require the use of recombinant viruses engineered to express a visibly detectable reporter protein. These altered viruses expressing fluorescent proteins, usually from a duplicated viral subgenomic reporter, are effective at marking infection but tend to be attenuated due to the modification of the genome. Additionally, field strains of viruses cannot be visualized using this approach unless infectious clones can be developed to insert a reporter protein. To circumvent these issues, we have developed an insect cell-based system for detecting wild-type sindbis virus infection that uses a virus inducible promoter to express a fluorescent reporter gene only upon active virus infection. We have developed an insect expression system that produces sindbis virus minigenomes containing a subgenomic promoter sequence, which produces a translatable RNA species only when infectious virus is present and providing viral replication proteins. This subgenomic reporter RNA system is able to detect wild-type Sindbis infection in cultured mosquito cells. The detection system is relatively species specific and only detects closely related viruses, but can detect low levels of alphavirus specific replication early during infection. A chikungunya virus detection system was also developed that specifically detects chikungunya virus infection. Transgenic Aedes aegypti mosquito families were established that constitutively express the sindbis virus reporter RNA and were found to only express fluorescent proteins during virus infection. This virus inducible reporter system demonstrates a novel approach for detecting non-recombinant virus infection in mosquito cell culture and in live transgenic mosquitoes.


Viruses | 2018

Ultrastructural Analysis of Chikungunya Virus Dissemination from the Midgut of the Yellow Fever Mosquito, Aedes aegypti

Asher M. Kantor; DeAna G. Grant; Velmurugan Balaraman; Tommi A. White; Alexander W. E. Franz

The transmission cycle of chikungunya virus (CHIKV) requires that mosquito vectors get persistently infected with the virus, following its oral acqsuisition from a vertebrate host. The mosquito midgut is the initial organ that gets infected with orally acquired CHIKV. Following its replication in the midgut epithelium, the virus exits the midgut and infects secondary tissues including the salivary glands before being transmitted to another host. Here, we investigate the pattern of CHIKV dissemination from the midgut of Aedes aegypti at the ultrastructural level. Bloodmeal ingestion caused overstretching of the midgut basal lamina (BL), which was disrupted in areas adjacent to muscles surrounding the midgut as shown by scanning electron microscopy (SEM). Using both transmission electron microscopy (TEM) and focused ion beam scanning electron microscopy (FIB-SEM) to analyze midgut preparations, mature chikungunya (CHIK) virions were found accumulating at the BL and within strands of the BL at 24–32 h post-infectious bloodmeal (pibm). From 48 h pibm onwards, virions no longer congregated at the BL and became dispersed throughout the basal labyrinth of the epithelial cells. Ingestion of a subsequent, non-infectious bloodmeal caused mature virions to congregate again at the midgut BL. Our study suggests that CHIKV needs a single replication cycle in the midgut epithelium before mature virions directly traverse the midgut BL during a relatively narrow time window, within 48 h pibm.

Collaboration


Dive into the Alexander W. E. Franz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ken E. Olson

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jingyi Lin

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge