Alexander Woglar
Max F. Perutz Laboratories
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander Woglar.
Cell | 2009
Alexandra Penkner; Alexandra Fridkin; Jiradet Gloggnitzer; Antoine Baudrimont; Thomas Machacek; Alexander Woglar; Edina Csaszar; Pawel Pasierbek; Gustav Ammerer; Yosef Gruenbaum; Verena Jantsch
Genome haploidization during meiosis depends on recognition and association of parental homologous chromosomes. The C. elegans SUN/KASH domain proteins Matefin/SUN-1 and ZYG-12 have a conserved role in this process. They bridge the nuclear envelope, connecting the cytoplasm and the nucleoplasm to transmit forces that allow chromosome movement and homolog pairing and prevent nonhomologous synapsis. Here, we show that Matefin/SUN-1 forms rapidly moving aggregates at putative chromosomal attachment sites in the meiotic transition zone (TZ). We analyzed requirements for aggregate formation and identified multiple phosphotarget residues in the nucleoplasmic domain of Matefin/SUN-1. These CHK-2 dependent phosphorylations occur in leptotene/zygotene, diminish during pachytene and are involved in pairing. Mimicking phosphorylation causes an extended TZ and univalents at diakinesis. Our data suggest that the properties of the nuclear envelope are altered during the time window when homologs are sorted and Matefin/SUN-1 aggregates form, thereby controling the movement, homologous pairing and interhomolog recombination of chromosomes.
The EMBO Journal | 2007
Clemens Uanschou; Tanja Siwiec; Andrea Pedrosa-Harand; Claudia Kerzendorfer; Eugenio Sanchez-Moran; Maria Novatchkova; Svetlana Akimcheva; Alexander Woglar; Franz Klein; Peter Schlögelhofer
Obligatory homologous recombination (HR) is required for chiasma formation and chromosome segregation in meiosis I. Meiotic HR is initiated by DNA double‐strand breaks (DSBs), generated by Spo11, a homologue of the archaebacterial topoisomerase subunit Top6A. In Saccharomyces cerevisiae, Rad50, Mre11 and Com1/Sae2 are essential to process an intermediate of the cleavage reaction consisting of Spo11 covalently linked to the 5′ termini of DNA. While Rad50 and Mre11 also confer genome stability to vegetative cells and are well conserved in evolution, Com1/Sae2 was believed to be fungal‐specific. Here, we identify COM1/SAE2 homologues in all eukaryotic kingdoms. Arabidopsis thaliana Com1/Sae2 mutants are sterile, accumulate AtSPO11‐1 during meiotic prophase and fail to form AtRAd51 foci despite the presence of unrepaired DSBs. Furthermore, DNA fragmentation in AtCom1 is suppressed by eliminating AtSPO11‐1. In addition, AtCOM1 is specifically required for mitomycin C resistance. Interestingly, we identified CtIP, an essential protein interacting with the DNA repair machinery, as the mammalian homologue of Com1/Sae2, with important implications for the molecular role of CtIP.
PLOS Genetics | 2010
Antoine Baudrimont; Alexandra Penkner; Alexander Woglar; Thomas Machacek; Christina Wegrostek; Jiradet Gloggnitzer; Alexandra Fridkin; Franz Klein; Yosef Gruenbaum; Pawel Pasierbek; Verena Jantsch
The Caenorhabditis elegans inner nuclear envelope protein matefin/SUN-1 plays a conserved, pivotal role in the process of genome haploidization. CHK-2–dependent phosphorylation of SUN-1 regulates homologous chromosome pairing and interhomolog recombination in Caenorhabditis elegans. Using time-lapse microscopy, we characterized the movement of matefin/SUN-1::GFP aggregates (the equivalent of chromosomal attachment plaques) and showed that the dynamics of matefin/SUN-1 aggregates remained unchanged throughout leptonene/zygotene, despite the progression of pairing. Movement of SUN-1 aggregates correlated with chromatin polarization. We also analyzed the requirements for the formation of movement-competent matefin/SUN-1 aggregates in the context of chromosome structure and found that chromosome axes were required to produce wild-type numbers of attachment plaques. Abrogation of synapsis led to a deceleration of SUN-1 aggregate movement. Analysis of matefin/SUN-1 in a double-strand break deficient mutant revealed that repair intermediates influenced matefin/SUN-1 aggregate dynamics. Investigation of movement in meiotic regulator mutants substantiated that proper orchestration of the meiotic program and effective repair of DNA double-strand breaks were necessary for the wild-type behavior of matefin/SUN-1 aggregates.
Developmental Cell | 2011
Sara Labella; Alexander Woglar; Verena Jantsch; Monique Zetka
During meiosis, chromosomes must find and align with their homologous partners. SUN and KASH-domain protein pairs play a conserved role by establishing transient linkages between chromosome ends and cytoskeletal forces across the intact nuclear envelope (NE). In C.xa0elegans, a pairing center (PC) on each chromosome mediates homolog pairing and linkage to the microtubule network. We report that the polo kinases PLK-1 and PLK-2 are targeted to the PC by ZIM/HIM-8-pairing proteins. Loss of plk-2 inhibits chromosome pairing and licenses synapsis between nonhomologous chromosomes, indicating that PLK-2 is required for PC-mediated interhomolog interactions. plk-2 is also required for meiosis-specific phosphorylation of SUN-1 and establishment of dynamic SUN/KASH (SUN-1/ZYG-12) modules that promote homolog pairing. Our results provide key insights into the regulation of homolog pairing and reveal that targeting of polo-like kinases to the NE by meiotic chromosomes establishes the conserved linkages to cytoskeletal forces needed for homology assessment.
PLOS Genetics | 2013
Alexander Woglar; Anahita Daryabeigi; Adele Adamo; Cornelia Habacher; Thomas Machacek; Adriana La Volpe; Verena Jantsch
Faithful chromosome segregation during meiosis I depends on the establishment of a crossover between homologous chromosomes. This requires induction of DNA double-strand breaks (DSBs), alignment of homologs, homolog association by synapsis, and repair of DSBs via homologous recombination. The success of these events requires coordination between chromosomal events and meiotic progression. The conserved SUN/KASH nuclear envelope bridge establishes transient linkages between chromosome ends and cytoskeletal forces during meiosis. In Caenorhabditis elegans, this bridge is essential for bringing homologs together and preventing nonhomologous synapsis. Chromosome movement takes place during synapsis and recombination. Concomitant with the onset of chromosome movement, SUN-1 clusters at chromosome ends associated with the nuclear envelope, and it is phosphorylated in a chk-2- and plk-2-dependent manner. Identification of all SUN-1 phosphomodifications at its nuclear N terminus allowed us to address their role in prophase I. Failures in recombination and synapsis led to persistent phosphorylations, which are required to elicit a delay in progression. Unfinished meiotic tasks elicited sustained recruitment of PLK-2 to chromosome ends in a SUN-1 phosphorylation–dependent manner that is required for continued chromosome movement and characteristic of a zygotene arrest. Furthermore, SUN-1 phosphorylation supported efficient synapsis. We propose that signals emanating from a failure to successfully finish meiotic tasks are integrated at the nuclear periphery to regulate chromosome end–led movement and meiotic progression. The single unsynapsed X chromosome in male meiosis is precluded from inducing a progression delay, and we found it was devoid of a population of phosphorylated SUN-1. This suggests that SUN-1 phosphorylation is critical to delaying meiosis in response to perturbed synapsis. SUN-1 may be an integral part of a checkpoint system to monitor establishment of the obligate crossover, inducible only in leptotene/zygotene. Unrepaired DSBs and unsynapsed chromosomes maintain this checkpoint, but a crossover intermediate is necessary to shut it down.
Chromosoma | 2014
Alexander Woglar; Verena Jantsch
Rapid chromosome movement during prophase of the first meiotic division has been observed in many organisms. It is generally concomitant with formation of the “meiotic chromosome bouquet,” a special chromosome configuration in which one or both chromosome ends attach to the nuclear envelope and become concentrated within a limited area. The precise function of the chromosomal bouquet is still not fully understood. Chromosome mobility is implicated in homologous chromosome pairing, synaptonemal complex formation, recombination, and resolution of chromosome entanglements. The basic mechanistic module through which forces are exerted on chromosomes is widely conserved; however, phenotypic differences have been reported among various model organisms once movement is abrogated. Movements are transmitted to the chromosome ends by the nuclear membrane-bridging SUN/KASH complex and are dependent on cytoskeletal filaments and motor proteins located in the cytoplasm. Here we review the recent findings on chromosome mobility during meiosis in an animal model system: the Caenorhabditis elegans nematode.
PLOS Genetics | 2017
Divya Pattabiraman; Baptiste Roelens; Alexander Woglar; Anne M. Villeneuve
During meiotic prophase, a structure called the synaptonemal complex (SC) assembles at the interface between aligned pairs of homologous chromosomes, and crossover recombination events occur between their DNA molecules. Here we investigate the inter-relationships between these two hallmark features of the meiotic program in the nematode C. elegans, revealing dynamic properties of the SC that are modulated by recombination. We demonstrate that the SC incorporates new subunits and switches from a more highly dynamic/labile state to a more stable state as germ cells progress through the pachytene stage of meiotic prophase. We further show that the more dynamic state of the SC is prolonged in mutants where meiotic recombination is impaired. Moreover, in meiotic mutants where recombination intermediates are present in limiting numbers, SC central region subunits become preferentially stabilized on the subset of chromosome pairs that harbor a site where pro-crossover factors COSA-1 and MutSγ are concentrated. Polo-like kinase PLK-2 becomes preferentially localized to the SCs of chromosome pairs harboring recombination sites prior to the enrichment of SC central region proteins on such chromosomes, and PLK-2 is required for this enrichment to occur. Further, late pachytene nuclei in a plk-2 mutant exhibit the more highly dynamic SC state. Together our data demonstrate that crossover recombination events elicit chromosome-autonomous stabilizing effects on the SC and implicate PLK-2 in this process. We discuss how this recombination-triggered modulation of SC state might contribute to regulatory mechanisms that operate during meiosis to ensure the formation of crossovers while at the same time limiting their numbers.
PLOS ONE | 2011
Antoine Baudrimont; Alexandra Penkner; Alexander Woglar; Yasmine M. Mamnun; Margot Hulek; Cathrin Struck; Ralf Schnabel; Josef Loidl; Verena Jantsch
The cohesin complex is required for the cohesion of sister chromatids and for correct segregation during mitosis and meiosis. Crossover recombination, together with cohesion, is essential for the disjunction of homologous chromosomes during the first meiotic division. Cohesin has been implicated in facilitating recombinational repair of DNA lesions via the sister chromatid. Here, we made use of a new temperature-sensitive mutation in the Caenorhabditis elegans SMC-3 protein to study the role of cohesin in the repair of DNA double-strand breaks (DSBs) and hence in meiotic crossing over. We report that attenuation of cohesin was associated with extensive SPO-11–dependent chromosome fragmentation, which is representative of unrepaired DSBs. We also found that attenuated cohesin likely increased the number of DSBs and eliminated the need of MRE-11 and RAD-50 for DSB formation in C. elegans, which suggests a role for the MRN complex in making cohesin-loaded chromatin susceptible to meiotic DSBs. Notably, in spite of largely intact sister chromatid cohesion, backup DSB repair via the sister chromatid was mostly impaired. We also found that weakened cohesins affected mitotic repair of DSBs by homologous recombination, whereas NHEJ repair was not affected. Our data suggest that recombinational DNA repair makes higher demands on cohesins than does chromosome segregation.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Adele Adamo; Alexander Woglar; Nicola Silva; Alexandra Penkner; Verena Jantsch; Adriana La Volpe
Introduction of multiple copies of a germ-line–expressed gene elicits silencing of the corresponding endogenous gene during Caenorhabditis elegans oogenesis; this process is referred to as germ-line cosuppression. Transformed plasmids assemble into extrachromosomal arrays resembling extra minichromosomes with repetitive structures. Loss of the transgene extrachromosomal array leads to reversion of the silencing phenomenon. Cosuppression and RNAi depend upon some of the same genes. In the C. elegans germ line, about half the cells undergo a physiological programmed cell death that shares most genetic requirements with somatic apoptosis. In addition, apoptosis is stimulated by DNA damage and synaptic failure mediated through different apoptotic checkpoints. We found that both germ-line cosuppression and RNAi of germ-line–expressed genes enhance apoptosis during C. elegans oogenesis. In contrast, apoptosis is not enhanced by extrachromosomal arrays carrying genes not driven by germ-line–specific promoters that thus do not elicit transgene-mediated cosuppression/silencing. Similarly, introduction of doubled-stranded RNA that shares no homology with endogenous genes has no effect on apoptosis. “Silencing-induced apoptosis” is dependent upon sir-2.1 and cep-1 (the worm p53 ortholog), and is accompanied by a rise in RAD-51 foci, a marker for ongoing DNA repair, indicating induction of DNA double-strand breaks. This finding suggests that the DNA damage-response pathway is involved. RNAi and cosuppression have been postulated as defense mechanisms against genomic intruders. We speculate that the mechanism here described may trigger the elimination of germ cells that have undergone viral infection or transposon activation.
PLOS Biology | 2016
Marlène Jagut; Patricia Hamminger; Alexander Woglar; Sophia Millonigg; Luis Paulin; Martin Mikl; Maria Rosaria Dello Stritto; Lois Tang; Cornelia Habacher; Angela Tam; Miguel Gallach; Arndt von Haeseler; Anne M. Villeneuve; Verena Jantsch
During the first meiotic division, crossovers (COs) between homologous chromosomes ensure their correct segregation. COs are produced by homologous recombination (HR)-mediated repair of programmed DNA double strand breaks (DSBs). As more DSBs are induced than COs, mechanisms are required to establish a regulated number of COs and to repair remaining intermediates as non-crossovers (NCOs). We show that the Caenorhabditis elegans RMI1 homolog-1 (RMH-1) functions during meiosis to promote both CO and NCO HR at appropriate chromosomal sites. RMH-1 accumulates at CO sites, dependent on known pro-CO factors, and acts to promote CO designation and enforce the CO outcome of HR-intermediate resolution. RMH-1 also localizes at NCO sites and functions in parallel with SMC-5 to antagonize excess HR-based connections between chromosomes. Moreover, RMH-1 also has a major role in channeling DSBs into an NCO HR outcome near the centers of chromosomes, thereby ensuring that COs form predominantly at off-center positions.