Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander Yakirevich is active.

Publication


Featured researches published by Alexander Yakirevich.


Water Resources Research | 1997

A model for numerical simulating of evaporation from bare saline soil

Alexander Yakirevich; Pedro Berliner; Shaul Sorek

A mathematical model for the computation of evaporation from bare saline soils is presented. Moisture flow and heat transport equations in the partially saturated zone of the soil are coupled at the soil surface with a lower atmosphere boundary layer model. The transport model considers multicomponent salt migration. The flow equation accounts for osmotic flux due to the presence of ion species in the soil solution. Nonlinear one-dimensional equations were solved using fully implicit finite difference schemes. The soil part of the model was tested using experimental data of water and solute redistribution under temperature gradients in sealed soil columns. In order to demonstrate the effect of soil salinity on the evaporation, the problem of water infiltration into soil with initially low water content and its subsequent evaporation was considered. Results show a significant effect of osmotic pressure gradients on predicted evaporation.


Journal of Environmental Quality | 2009

Uncertainty evaluation of coliform bacteria removal from vegetated filter strip under overland flow condition.

Andrey K. Guber; Alexander Yakirevich; Ali M. Sadeghi; Yakov A. Pachepsky; Daniel R. Shelton

Vegetated filter strips (VFS) have become an important component of water quality improvement by reducing sediment and nutrients transport to surface water. This management practice is also beneficial for controlling manure-borne pathogen transport to surface water. The objective of this work was to assess the VFS efficiency and evaluate the uncertainty in predicting the microbial pollutant removal from overland flow in VFS. We used the kinematic wave overland flow model as implemented in KINEROS2 coupled with the convective-dispersive overland transport model which accounts for the reversible attachment-detachment and surface straining of infiltrating bacteria. The model was successfully calibrated with experimental data obtained from a series of simulated rainfall experiments at vegetated and bare sandy loam and clay loam plots, where fecal coliforms were released from manure slurry applied on the top of the plots. The calibrated model was then used to assess the sensitivity of the VFS efficiency to the model parameters, rainfall duration, and intensity for a case study with a 6-m VFS placed at the edge of 200-m long field. The Monte Carlo simulations were also performed to evaluate the uncertainty associated with the VFS efficiency given the uncertainty in the model parameters and key inputs. The VFS efficiency was found to be <95% in 25%, <75% in 23%, and <25% in 20% of cases. Relatively long high-intensity rainfalls, low hydraulic conductivities, low net capillary drives of soil, and high soil moisture contents before rainfalls caused the partial failure of VFS to retain coliforms from the infiltration excess runoff.


Water Research | 2013

Modeling transport of Escherichia coli in a creek during and after artificial high-flow events: Three-year study and analysis

Alexander Yakirevich; Yakov A. Pachepsky; Andrey K. Guber; T. J. Gish; Daniel R. Shelton; Kyung Hwa Cho

Escherichia coli is the leading indicator of microbial contamination of natural waters, and so its in-stream fate and transport needs to be understood to eventually minimize surface water contamination by microorganisms. To better understand mechanisms of E. coli release and transport from soil sediment in a creek the artificial high-water flow events were created by releasing 60-80 m(3) of city water on a tarp-covered stream bank in four equal allotments in July 2008, 2009 and 2010. A conservative tracer difluorobenzoic acid (DFBA) was added to the released water in 2009 and 2010. Water flow rate, E. coli and DFBA concentrations as well as water turbidity were monitored with automated samplers at three in-stream weirs. A one-dimensional model was applied to simulate water flow, and E. coli and DFBA transport during these experiments. The Saint-Venant equations were used to calculate water depth and discharge while a stream solute transport model accounted for release of bacteria by shear stress from bottom sediments, advection-dispersion, and exchange with transient storage (TS). Reach-specific model parameters were estimated by evaluating observed time series of flow rates and concentrations of DFBA and E. coli at all three weir stations. Observed DFBA and E. coli breakthrough curves (BTC) exhibited long tails after the water pulse and tracer peaks had passed indicating that transient storage (TS) might be an important element of the in-stream transport process. Comparison of simulated and measured E. coli concentrations indicated that significant release of E. coli continued when water flow returned to the base level after the water pulse passed and bottom shear stress was small. The mechanism of bacteria continuing release from sediment could be the erosive boundary layer exchange enhanced by changes in biofilm properties by erosion and sloughing detachment.


Water Research | 2010

Mathematical model for analysis of recirculating vertical flow constructed wetlands.

Menachem Y. Sklarz; Amit Gross; M. Ines M. Soares; Alexander Yakirevich

The recirculating vertical flow constructed wetland (RVFCW) was developed for the treatment of domestic wastewater (DWW). In this system, DWW is applied to a vertical flow bed through which it trickles into a reservoir located beneath the bed. It is then recirculated back to the root zone of the bed. In this study, a compartmental model was developed to simulate the RVFCW. The model, which addresses transport and removal kinetics of total suspended solids, 5-day biological oxygen demand and nitrogen, was fitted to kinetical results obtained from pilot field setups and a local sensitivity analysis was performed on the model parameters and operational conditions. This analysis showed that after 5h of treatment water quality is affected more by stochastic events than by the model parameter values, emphasizing the stability of the RVFCW system to large variations in operational conditions. Effluent quality after 1h of treatment, when the sensitivity analysis showed the parameter impacts to be largest, was compared to model predictions. The removal rate was found to be dependent on the recirculation rate. The predictions correlated well with experimental observations, leading to the conclusion that the proposed model is a satisfactory tool for studying RVFCWs.


Water Air and Soil Pollution | 2000

Wastewater Reclamation for Agricultural Reuse in Israel: Trends and Experimental Results

Asher Brenner; Semion Shandalov; Rami Messalem; Alexander Yakirevich; Gideon Oron; Menahem Rebhun

Water shortage and a deterioration in the quality of water resources in Israel have made necessary a national policy recommending reuse of practically all municipal wastewater in order to supply a major part of agricultural water demand. Two pilot-scale systems were operated and studied for several years. The first one consisted of an advanced treatment scheme incorporating a sequencing batch reactor (SBR) system with further deep-bed granular filtration. The second system was an SBR unit, for the purpose of optimizing nitrogen and phosphorus removal and testing further microfiltration of SBR effluents. The SBR process has been shown to be an efficient biological treatment method producing low Biochemical Oxygen Demand (BOD) and Total Suspended Solids (TSS) effluents. SBR effluents, even if loaded with high TSS concentrations, could be further purified in the filtration stage, producing low-turbidity effluents. Granular filtration experiments were carried out using a gravitational single-medium filter composed of uniformly-sieved quartz sand. It was found that most of the suspended solids were removed in the top 10 cm of the filter bed. Influent turbidity was found to be the main parameter affecting the process, while filtration rate had only a minor effect. Microfiltration of SBR effluents showed highly efficient removal of turbidity and pathogens. Advanced mathematical models were developed and calibrated for both the biological process and for the granular filtration process.


Environmental Science & Technology | 2012

Advection dominated transport of polycyclic aromatic hydrocarbons in amended sediment caps.

Philip T. Gidley; Seokjoon Kwon; Alexander Yakirevich; Victor S. Magar; Upal Ghosh

Typical sand caps used for sediment remediation have little sorption capacity to retard the migration of hydrophobic contaminants such as PAHs that can be mobilized by significant groundwater flow. Laboratory column experiments were performed using contaminated sediments and capping materials from a creosote contaminated USEPA Superfund site. Azoic laboratory column experiments demonstrated rapid breakthrough of lower molecular weight PAHs when groundwater seepage was simulated through a column packed with coarse sand capping material. After eight pore volumes of flow, most PAHs measured showed at least 50% of initial source pore water concentrations at the surface of 65 cm capping material. PAH concentration in the cap solids was low and comparable to background levels typically seen in urban depositional sediment, but the pore water concentrations were high. Column experiments with a peat amendment delayed PAH breakthrough. The most dramatic result was observed for caps amended with activated carbon at a dose of 2% by dry weight. PAH concentrations in the pore water of the activated carbon amended caps were 3-4 orders of magnitude lower (0.04 ± 0.02 μg/L for pyrene) than concentrations in the pore water of the source sediments (26.2 ± 5.6 μg/L for pyrene) even after several hundred pore volumes of flow. Enhancing the sorption capacity of caps with activated carbon amendment even at a lower dose of 0.2% demonstrated a significant impact on contaminant retardation suggesting consideration of active capping for field sites prone to groundwater upwelling or where thin caps are desired to minimize change in bathymetry and impacts to aquatic habitats.


Water Research | 2011

Colloid transport in porous media: Impact of hyper-saline solutions

Einat Magal; Noam Weisbrod; Yoseph Yechieli; Sharon L. Walker; Alexander Yakirevich

The transport of colloids suspended in natural saline solutions with a wide range of ionic strengths, up to that of Dead Sea brines (10(0.9) M) was explored. Migration of microspheres through saturated sand columns of different sizes was studied in laboratory experiments and simulated with mathematical models. Colloid transport was found to be related to the solution salinity as expected. The relative concentration of colloids at the columns outlet decreased (after 2-3 pore volumes) as the solution ionic strength increased until a critical value was reached (ionic strength > 10(-1.8) M) and then remained constant above this level of salinity. The colloids were found to be mobile even in the extremely saline brines of the Dead Sea. At such high ionic strength no energetic barrier to colloid attachment was presumed to exist and colloid deposition was expected to be a favorable process. However, even at these salinity levels, colloid attachment was not complete and the transport of ∼ 30% of the colloids through the 30-cm long columns was detected. To further explore the deposition of colloids on sand surfaces in Dead Sea brines, transport was studied using 7-cm long columns through which hundreds of pore volumes were introduced. The resulting breakthrough curves exhibited a bimodal shape whereby the relative concentration (C/C(0)) of colloids at the outlet rose to a value of 0.8, and it remained relatively constant (for the ∼ 18 pore volumes during which the colloid suspension was flushed through the column) and then the relative concentration increased to a value of one. The bimodal nature of the breakthrough suggests different rates of colloid attachment. Colloid transport processes were successfully modeled using the limited entrapment model, which assumes that the colloid attachment rate is dependent on the concentration of the attached colloids. Application of this model provided confirmation of the colloid aggregation and their accelerated attachment during transport through soil in high salinity solution.


Water Science and Technology | 2008

Small scale recirculating vertical flow constructed wetland (RVFCW) for the treatment and reuse of wastewater

Amit Gross; Menachem Y. Sklarz; Alexander Yakirevich; M. I. M. Soares

The quantity of freshwater available worldwide is declining, revealing a pressing need for its more efficient use. Moreover, in many developing countries and lightly populated areas, raw wastewater is discarded into the environment posing serious ecological and health problems. Unfortunately, this situation will persist unless low-cost, effective and simple technologies are brought in. The aim of this study is to present such a treatment method, a novel setup which is termed recirculating vertical flow constructed wetland (RVFCW). The RVFCW is composed of two components: (i) a three-layer bed consisting of planted organic soil over an upper layer of filtering media (i.e. tuff or beads) and a lower layer of limestone pebbles, and (ii) a reservoir located beneath the bed. Wastewater flows directly into the plant root zone and trickles down through the three-layer bed into the reservoir, allowing passive aeration. From the reservoir the water is recirculated back to the bed, several times, until the desired purification is achieved. The results obtained show that the RVFCW is an effective and convenient strategy to treat (domestic, grey and agro) wastewater for re-use in irrigation. The system performance is expected to be further improved once current optimization experiments and mathematical modeling studies are concluded.


Water Science and Technology | 1997

Model calibration of deep-bed filtration based on pilot-scale treatment of secondary effluent

Semion Shandalov; Alexander Yakirevich; Asher Brenner; Gideon Oron; Menahem Rebhun

A mathematical model of deep-bed filtration has been calibrated and verified based on experimental results. The experimental system, used for testing of the secondary treatment quality and the tertiary filtration phase, incorporates an SBR system followed by a filtration column. The turbidity of the incoming SBR effluent was in the range of 12 to 34 NTU. The bed grain size was in the range of 1.4 to 2.0 mm. The examined filtration velocities were 11, 15, 20 and 25 m/h. The filtration process is simulated by equations of balance and kinetics. The latter includes the attachment and detachment process, characterized by rate coefficients KA and KD, respectively. These coefficients , as well as the parameters of hydrodispersivity and effective porosity, are found on the basis of nonlinear optimization, using numerical solution of the model and the experimental breakthrough curves. The method demonstrates good agreement between experimental and simulated results.


Journal of Environmental Quality | 2013

Effect of treated domestic wastewater on soil physicochemical and microbiological properties.

Menachem Y. Sklarz; Meiyang Zhou; Diana L. Ferrando Chavez; Alexander Yakirevich; Osnat Gillor; Amit Gross; M. Ines M. Soares

A main concern with reuse of treated domestic wastewater (DWW) in irrigation is its possible effect on the soil. Few studies have focused on DWW treated in on-site settings, which generally use low-tech systems that can be constructed and serviced locally. One such system is the recirculating vertical flow constructed wetland (RVFCW). The aim of this study was to assess short- to midterm effects of irrigation with DWW treated in the RVFCW. Four groups of plastic barrels, filled with a sandy loam soil, were irrigated for 36 mo with fresh water (FW), FW with added fertilizer, raw DWW, or DWW treated in the RVFCW followed by ultraviolet disinfection. Principal component analysis revealed that the soil irrigated with treated DWW had physicochemical properties similar to those irrigated with FW amended with fertilizer. Levels of surfactants in soil irrigated with treated DWW were identical to those expected from standard irrigation practices, abating concerns for possible changes in soil hydraulic properties. was not detected in the soil irrigated with treated DWW, demonstrating the importance of disinfection of treated effluents before reuse in irrigation. Furthermore, irrigation with treated DWW did not alter the bacterial community structure according to terminal restriction fragment analysis. This 3-yr study suggests that the practice of irrigation with RVFCW effluents is safe. Continuation of the experiment is required to determine whether longer-term irrigation might show a different pattern.

Collaboration


Dive into the Alexander Yakirevich's collaboration.

Top Co-Authors

Avatar

Eilon Adar

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Yakov A. Pachepsky

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Noam Weisbrod

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Andrey K. Guber

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Michael Kuznetsov

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

T. J. Gish

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Ronit Nativ

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Shai Arnon

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Zeev Ronen

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

R. E. Cady

Nuclear Regulatory Commission

View shared research outputs
Researchain Logo
Decentralizing Knowledge