Alexander Yoffe
Weizmann Institute of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander Yoffe.
Nano Letters | 2008
Adam Winkleman; Gilad Gotesman; Alexander Yoffe; Ron Naaman
We describe the fabrication of a patterned, hydrophobic silicon substrate that can pin a water droplet despite its large contact angle. Arrays of nm tips in silicon were fabricated by reactive ion etching using polymer masks defined by photolithography. A droplet sitting on one class of these substrates did not fall even after the substrate was turned upside-down. The production allows the fabrication of large arrays of tips with a one-step simple etching process, along with silanization, to achieve a substrate with both very large contact and tilting angles.
Nanotechnology | 2007
H. Friedman; Orly Eidelman; Yishay Feldman; A. Moshkovich; Vladislav Perfiliev; L. Rapoport; Hagai Cohen; Alexander Yoffe; Reshef Tenne
Composite coatings of Co?+?fullerene-like WS2 nanoparticles on stainless steel substrate were obtained through electroless deposition, using DMAB (dimethyl borane complex, 97%) as the reducing agent, and by electroplating in acidic solution. Phase analysis results show that the coatings consist of Co and the fullerene-like WS2 nanoparticles alone. Tribological measurements show reduced wear and friction of the composite coatings as compared with the pure cobalt film or the stainless steel substrate.
Nano Letters | 2010
Tatikonda Anand Kumar; Amos Bardea; Yechiel Shai; Alexander Yoffe; Ron Naaman
A new method is presented for patterning surfaces with gradient properties. The method is based on magnetolithography in which the surface patterning is performed by applying a gradient of a magnetic field on the substrate, using paramagnetic metal masks in the presence of a constant magnetic field. Superparamagnetic nanoparticles (NPs) are deposited on the substrate, and they assemble according to the field and its gradients induced by the mask. Once they pattern the substrate, they protect their sites on the substrate from interacting with any other species. The areas not protected by the NPs can be covered by molecules that chemically bind to the substrate. After these molecules are bound, the NPs are removed, and other molecules may be adsorbed on the newly exposed area. The new technique is based on a parallel process that can be carried out on a full wafer. It provides high resolution, it creates gradient continuously from sub-micrometers to millimeters, and it can be performed on surfaces that are not flat and that are even on the inside of a tube. The gradient that is formed is not limited to a specific property or type of substrate.
Nature Materials | 2015
Jonathan Berson; Doron Burshtain; Assaf Zeira; Alexander Yoffe; Rivka Maoz; Jacob Sagiv
Ionic transport plays a central role in key technologies relevant to energy, and information processing and storage, as well as in the implementation of biological functions in living organisms. Here, we introduce a supramolecular strategy based on the non-destructive chemical patterning of a highly ordered self-assembled monolayer that allows the reproducible fabrication of ion-conducting surface patterns (ion-conducting channels) with top -COOH functional groups precisely definable over the full range of length scales from nanometre to centimetre. The transport of a single layer of selected metal ions and the electrochemical processes related to their motion may thus be confined to predefined surface paths. As a generic solid ionic conductor that can accommodate different mobile ions in the absence of any added electrolyte, these ion-conducting channels exhibit bias-induced competitive transport of different ionic species. This approach offers unprecedented opportunities for the realization of designed ion-conducting systems with nanoscale control, beyond the inherent limitations posed by available ionic materials.
Journal of Applied Physics | 2012
Igal Levine; Alexander Yoffe; Adi Salomon; Wenjie Li; Yishay Feldman; Ayelet Vilan
Aluminum thin films are known for their extremely rough surface, which is detrimental for applications such as molecular electronics and photonics, where protrusions cause electrical shorts or strong scattering. We achieved atomically flat Al films using a highly non-equilibrium approach. Ultra-fast thermal deposition (UFTD), at rates >10 nm/s, yields RMS roughness of 0.4 to 0.8 nm for 30–50 nm thick Al films on variety of substrates. For UFTD on Si(111) substrates, the top surface follows closely the substrate topography (etch pits), indicating a 2D, layer-by-layer growth. The Al film is a mixture of (100) and (111) grains, where the latter are commensurate with the in-plane orientation of the underlying Si (epitaxy). We show the use of these ultra-smooth Al films for highly reproducible charge-transport measurements across a monolayer of alkyl phosphonic acid as well as for plasmonics applications by directly patterning them by focused ion beam to form a long-range ordered array of holes. UFTD is a one-...
IEEE Transactions on Nanotechnology | 2017
Amos Bardea; Alexander Yoffe
Magneto-lithography (ML) is based on patterning magnetic field on a substrate, using paramagnetic or diamagnetic masks, that defines the shape and strength of the magnetic field. ML is a “bottom-up” method but at the same time, it provides desired high-throughput capabilities for mass production. It is based on applying a magnetic field on the substrate using paramagnetic metal masks that define the spatial distribution and shape of the applied field. The second component in ML is ferromagnetic nanoparticles that are assembled onto the substrate according to the field induced by the mask. We demonstrate the use of various methods of ML for common microelectronic processes such as etching and deposition.
Angewandte Chemie | 2016
Rivka Maoz; Doron Burshtain; Hagai Cohen; Peter Nelson; Jonathan Berson; Alexander Yoffe; Jacob Sagiv
Effective control of chemistry at interfaces is of fundamental importance for the advancement of methods of surface functionalization and patterning that are at the basis of many scientific and technological applications. A conceptually new type of interfacial chemical transformations has been discovered, confined to the contact surface between two solid materials, which may be induced by exposure to X-rays, electrons or UV light, or by the application of electrical bias. One of the reacting solids is a removable thin film coating that acts as a reagent/catalyst in the chemical modification of the solid surface on which it is applied. Given the diversity of thin film coatings that may be used as solid reagents/catalysts and the lateral confinement options provided by the use of irradiation masks, conductive AFM probes or stamps, and electron beams in such solid-phase reactions, this approach is suitable for precise targeting of different desired chemical modifications to predefined surface sites spanning the macro- to nanoscale.
Materials Science-poland | 2015
Alexander Yoffe; Ilya Zon; Yishay Feldman; Victor Shelukhin
Abstract A study of the correlations between plasma parameters, gas ratios, and deposited amorphous carbon film properties is presented. The injection of a C4F8/Ar/N2 mixture of gases was successfully used in an inductively coupled plasma system for the preparation of amorphous carbon films with different fluoride doping at room-temperature, using silicon as a substrate. This coating was formed at low-pressure and low-energy using an inductively coupled plasma process. A strong dependence between the ratios of gases during deposition and the composition of the substrate compounds was shown. The values of ratios between Ar (or Ar+N2) and C4F8 - 1:1 and between N2 and Ar - 1:2 in the N2/Ar/C4F8 mixture were found as the best for low fluoridated coatings. In addition, an example of improving the etch-passivation in the Bosch procedure was described. Scanning electron microscopy with energy dispersive spectroscopy options, X-ray diffraction, and X-ray reflectivity were used for quantitative analysis of the deposited films.
ChemPhysChem | 2013
Ohad Goldbart; Alexander Yoffe; Sidney R. Cohen; Rita Rosentsveig; Yishay Feldman; L. Rapoport; Reshef Tenne
This study describes a new method for fabrication of thin composite films using physical vapor deposition (PVD). Titanium (Ti) and hybrid films of titanium containing tungsten disulphide nanoparticles with inorganic fullerene-like structure (Ti/IF-WS2) were fabricated with a modified PVD machine. The evaporation process includes the pulsed deposition of IF-WS2 by a sprayer head. This process results in IF-WS2 nanoparticles embedded in a Ti matrix. The layers were characterized by various techniques, which confirm the composition and structure of the hybrid film. The Ti/IF-WS2 shows better wear resistance and a lower friction coefficient when compared to the Ti layer or Ti substrate. The Ti/IF films show very good antireflective properties in the visible and near-IR region. Such films may find numerous applications, for example, in the aerospace and medical technology.
Technical Physics | 2012
Alexander Yoffe; H. Cohen; V. Shelukhin
A procedure for the production of metal-coated quasi-amorphous pyroelectric thin SrTiO3 films is described. The films are grown in a modified 306 Edwards magnetron sputtering setup under controlled thermal conditions and stabilized high-accuracy vacuum and gas pressure conditions. Three-layer 200 nm metal-100 nm SrTiO3-100 nm metal films are studied. The pyroelectric nature of the electric response of these films to heating is directly established, since metallic contacts made from the same material do not distort the measurement results, which excludes the effect of a contact potential difference on the measurement results.