Alexander Zizka
University of Gothenburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander Zizka.
Global Ecology and Biogeography | 2015
Carla Maldonado; Carlos I. Molina; Alexander Zizka; Claes Persson; Charlotte M. Taylor; Joaquina Albán; Eder Chilquillo; Nina Rønsted; Alexandre Antonelli
Abstract Aim Massive digitalization of natural history collections is now leading to a steep accumulation of publicly available species distribution data. However, taxonomic errors and geographical uncertainty of species occurrence records are now acknowledged by the scientific community – putting into question to what extent such data can be used to unveil correct patterns of biodiversity and distribution. We explore this question through quantitative and qualitative analyses of uncleaned versus manually verified datasets of species distribution records across different spatial scales. Location The American tropics. Methods As test case we used the plant tribe Cinchoneae (Rubiaceae). We compiled four datasets of species occurrences: one created manually and verified through classical taxonomic work, and the rest derived from GBIF under different cleaning and filling schemes. We used new bioinformatic tools to code species into grids, ecoregions, and biomes following WWFs classification. We analysed species richness and altitudinal ranges of the species. Results Altitudinal ranges for species and genera were correctly inferred even without manual data cleaning and filling. However, erroneous records affected spatial patterns of species richness. They led to an overestimation of species richness in certain areas outside the centres of diversity in the clade. The location of many of these areas comprised the geographical midpoint of countries and political subdivisions, assigned long after the specimens had been collected. Main conclusion Open databases and integrative bioinformatic tools allow a rapid approximation of large‐scale patterns of biodiversity across space and altitudinal ranges. We found that geographic inaccuracy affects diversity patterns more than taxonomic uncertainties, often leading to false positives, i.e. overestimating species richness in relatively species poor regions. Public databases for species distribution are valuable and should be more explored, but under scrutiny and validation by taxonomic experts. We suggest that database managers implement easy ways of community feedback on data quality.
Frontiers in Genetics | 2015
Alexandre Antonelli; Alexander Zizka; Daniele Silvestro; Ruud Scharn; Borja Cascales-Miñana; Christine D. Bacon
Understanding the processes that have generated the latitudinal biodiversity gradient and the continental differences in tropical biodiversity remains a major goal of evolutionary biology. Here we estimate the timing and direction of range shifts of extant flowering plants (angiosperms) between tropical and non-tropical zones, and into and out of the major tropical regions of the world. We then calculate rates of speciation and extinction taking into account incomplete taxonomic sampling. We use a recently published fossil calibrated phylogeny and apply novel bioinformatic tools to code species into user-defined polygons. We reconstruct biogeographic history using stochastic character mapping to compute relative numbers of range shifts in proportion to the number of available lineages through time. Our results, based on the analysis of c. 22,600 species and c. 20 million geo-referenced occurrence records, show no significant differences between the speciation and extinction of tropical and non-tropical angiosperms. This suggests that at least in plants, the latitudinal biodiversity gradient primarily derives from other factors than differential rates of diversification. In contrast, the outstanding species richness found today in the American tropics (the Neotropics), as compared to tropical Africa and tropical Asia, is associated with significantly higher speciation and extinction rates. This suggests an exceedingly rapid evolutionary turnover, i.e., Neotropical species being formed and replaced by one another at unparalleled rates. In addition, tropical America stands out from other continents by having “pumped out” more species than it received through most of the last 66 million years. These results imply that the Neotropics have acted as an engine for global plant diversity.
Journal of Ethnobiology and Ethnomedicine | 2015
Alexander Zizka; Adjima Thiombiano; Stefan Dressler; Blandine Mi Nacoulma; Amadé Ouédraogo; Issaka Ouédraogo; Oumarou Ouédraogo; Georg Zizka; Karen Hahn; Marco Schmidt
BackgroundThe West African country of Burkina Faso (BFA) is an example for the enduring importance of traditional plant use today. A large proportion of its 17 million inhabitants lives in rural communities and strongly depends on local plant products for their livelihood. However, literature on traditional plant use is still scarce and a comprehensive analysis for the country is still missing.MethodsIn this study we combine the information of a recently published plant checklist with information from ethnobotanical literature for a comprehensive, national scale analysis of plant use in Burkina Faso. We quantify the application of plant species in 10 different use categories, evaluate plant use on a plant family level and use the relative importance index to rank all species in the country according to their usefulness. We focus on traditional medicine and quantify the use of plants as remedy against 22 classes of health disorders, evaluate plant use in traditional medicine on the level of plant families and rank all species used in traditional medicine according to their respective usefulness.ResultsA total of 1033 species (50%) in Burkina Faso had a documented use. Traditional medicine, human nutrition and animal fodder were the most important use categories. The 12 most common plant families in BFA differed considerably in their usefulness and application. Fabaceae, Poaceae and Malvaceae were the plant families with the most used species. In this study Khaya senegalensis, Adansonia digitata and Diospyros mespiliformis were ranked the top useful plants in BFA. Infections/Infestations, digestive system disorders and genitourinary disorders are the health problems most commonly addressed with medicinal plants. Fabaceae, Poaceae, Asteraceae, Apocynaceae, Malvaceae and Rubiaceae were the most important plant families in traditional medicine. Tamarindus indica, Vitellaria paradoxa and Adansonia digitata were ranked the most important medicinal plants.ConclusionsThe national-scale analysis revealed systematic patterns of traditional plant use throughout BFA. These results are of interest for applied research, as a detailed knowledge of traditional plant use can a) help to communicate conservation needs and b) facilitate future research on drug screening.
Systematic Biology | 2016
Mats Töpel; Alexander Zizka; Maria Fernanda Calió; Ruud Scharn; Daniele Silvestro; Alexandre Antonelli
&NA; Understanding the patterns and processes underlying the uneven distribution of biodiversity across space constitutes a major scientific challenge in systematic biology and biogeography, which largely relies on effectively mapping and making sense of rapidly increasing species occurrence data. There is thus an urgent need for making the process of coding species into spatial units faster, automated, transparent, and reproducible. Here we present SpeciesGeoCoder, an open‐source software package written in Python and R, that allows for easy coding of species into user‐defined operational units. These units may be of any size and be purely spatial (i.e., polygons) such as countries and states, conservation areas, biomes, islands, biodiversity hotspots, and areas of endemism, but may also include elevation ranges. This flexibility allows scoring species into complex categories, such as those encountered in topographically and ecologically heterogeneous landscapes. In addition, SpeciesGeoCoder can be used to facilitate sorting and cleaning of occurrence data obtained from online databases, and for testing the impact of incorrect identification of specimens on the spatial coding of species. The various outputs of SpeciesGeoCoder include quantitative biodiversity statistics, global and local distribution maps, and files that can be used directly in many phylogeny‐based applications for ancestral range reconstruction, investigations of biome evolution, and other comparative methods. Our simulations indicate that even datasets containing hundreds of millions of records can be analyzed in relatively short time using a standard computer. We exemplify the use of SpeciesGeoCoder by inferring the historical dispersal of birds across the Isthmus of Panama, showing that lowland species crossed the Isthmus about twice as frequently as montane species with a marked increase in the number of dispersals during the last 10 million years.
Philosophical Transactions of the Royal Society B | 2016
Daniele Silvestro; Alexander Zizka; Christine D. Bacon; Borja Cascales-Miñana; Nicolas Salamin; Alexandre Antonelli
Methods in historical biogeography have revolutionized our ability to infer the evolution of ancestral geographical ranges from phylogenies of extant taxa, the rates of dispersals, and biotic connectivity among areas. However, extant taxa are likely to provide limited and potentially biased information about past biogeographic processes, due to extinction, asymmetrical dispersals and variable connectivity among areas. Fossil data hold considerable information about past distribution of lineages, but suffer from largely incomplete sampling. Here we present a new dispersal–extinction–sampling (DES) model, which estimates biogeographic parameters using fossil occurrences instead of phylogenetic trees. The model estimates dispersal and extinction rates while explicitly accounting for the incompleteness of the fossil record. Rates can vary between areas and through time, thus providing the opportunity to assess complex scenarios of biogeographic evolution. We implement the DES model in a Bayesian framework and demonstrate through simulations that it can accurately infer all the relevant parameters. We demonstrate the use of our model by analysing the Cenozoic fossil record of land plants and inferring dispersal and extinction rates across Eurasia and North America. Our results show that biogeographic range evolution is not a time-homogeneous process, as assumed in most phylogenetic analyses, but varies through time and between areas. In our empirical assessment, this is shown by the striking predominance of plant dispersals from Eurasia into North America during the Eocene climatic cooling, followed by a shift in the opposite direction, and finally, a balance in biotic interchange since the middle Miocene. We conclude by discussing the potential of fossil-based analyses to test biogeographic hypotheses and improve phylogenetic methods in historical biogeography.
Ecography | 2018
Alexander Zizka; Hans ter Steege; Maria do Céo R. Pessoa; Alexandre Antonelli
Tropical America (the Neotropics) harbours more plant species than any other region on Earth. The contribution of rare species to this diversity has been recently recognised, but their spatial distribution remains poorly understood. Here, we use all collection records of angiosperms from the Global Biodiversity Information Facility to delineate Neotropical bioregions, and to identify putatively rare species within the Neotropics and the Amazonian rainforest. We analyse the spatial distribution of these species and validate the results on a largely independent dataset based on vegetation plots from the Amazon Tree Diversity Network. We find that rare species are homogeneously distributed through most parts of the lowland Neotropics and Amazonia, but more concentrated in highlands. The second collection of any rare species is most often found in the close vicinity of the first, but in 20% of cases they are more than 580 kilometres apart. We also find cross-taxonomic patterns of disjunct distributions within the Andes, the Atlantic forest in eastern Brazil, and between Amazonia and the Atlantic forest, but no clear disjunction patterns within lowland areas. These results suggest that a considerable proportion of rare plant species have surprisingly large distribution ranges, and that collections of rare species across most of the lowland Neotropics, and in particular in Amazonia, show no clear directionality. The second record of many rare species may be found virtually anywhere, urging the need for intensifying and broadening biological sampling. This article is protected by copyright. All rights reserved.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Alexandre Antonelli; Alexander Zizka; Fernanda Antunes Carvalho; Ruud Scharn; Christine D. Bacon; Daniele Silvestro; Fabien L. Condamine
Significance Amazonia is not only the world’s most diverse rainforest but is also the region in tropical America that has contributed most to its total biodiversity. We show this by estimating and comparing the evolutionary history of a large number of animal and plant species. We find that there has been extensive interchange of evolutionary lineages among different regions and biomes, over the course of tens of millions of years. Amazonia stands out as the primary source of diversity, which can be mainly explained by the total amount of time Amazonian lineages have occupied the region. The exceedingly rich and heterogeneous diversity of the American tropics could only be achieved by high rates of dispersal events across the continent. The American tropics (the Neotropics) are the most species-rich realm on Earth, and for centuries, scientists have attempted to understand the origins and evolution of their biodiversity. It is now clear that different regions and taxonomic groups have responded differently to geological and climatic changes. However, we still lack a basic understanding of how Neotropical biodiversity was assembled over evolutionary timescales. Here we infer the timing and origin of the living biota in all major Neotropical regions by performing a cross-taxonomic biogeographic analysis based on 4,450 species from six major clades across the tree of life (angiosperms, birds, ferns, frogs, mammals, and squamates), and integrate >1.3 million species occurrences with large-scale phylogenies. We report an unprecedented level of biotic interchange among all Neotropical regions, totaling 4,525 dispersal events. About half of these events involved transitions between major environmental types, with a predominant directionality from forested to open biomes. For all taxonomic groups surveyed here, Amazonia is the primary source of Neotropical diversity, providing >2,800 lineages to other regions. Most of these dispersal events were to Mesoamerica (∼1,500 lineages), followed by dispersals into open regions of northern South America and the Cerrado and Chaco biomes. Biotic interchange has taken place for >60 million years and generally increased toward the present. The total amount of time lineages spend in a region appears to be the strongest predictor of migration events. These results demonstrate the complex origin of tropical ecosystems and the key role of biotic interchange for the assembly of regional biotas.
Candollea | 2015
Alexander Zizka; Adjima Thiombiano; Stefan Dressler; Blandine Mi Nacoulma; Amadé Ouédraogo; Issaka Ouédraogo; Oumarou Ouédraogo; Georg Zizka; Karen Hahn; Marco F. H. Schmidt
Abstract Zizka, A., A. Thiombiano, S. Dressler, B. M. I. Nacoulma, A. Ouédraogo, I. Ouédraogo, O. ouédraogo, G. Zizka, K. Hahn & M. Schmidt (2015). The vascular plant diversity of Burkina Faso (West Africa) — a quantitative analysis and implications for conservation. Candollea 70: 9–20 In English, English and French abstracts. Based on a species inventory and the related distribution dataset, the authors present a quantitative analysis of the vascular plant diversity of Burkina Faso (BFA) and its four phytogeographic zones. We analyzed species richness, higher taxon diversity, life forms, chorological types, introduced species, habitat preferences and the number of rare species. The flora of BFA comprises 1972 non-cultivated vascular plant species in 752 genera and 145 families. Species richness and plant family richness are highest in the South Sudanian zone in the South of the country. Fabaceae, Poaceae and Cyperaceae are the most species rich plant families. Only one species (Isoetes jaegeri Pitot) is endemic to the country, whereas the vast majority occurs throughout Africa. The flora is dominated by therophytes and phanerophytes. Our results show a good representation of the West African flora in BFA. The flora and vegetation of the four phytogeographic zones within BFA is determined by the latitudinal climatic gradient of the region. The relative number of phanerophytes and forest species decrease along the gradient, while the relative number of therophytes increase. Based on the specimen record we classified 38% of the plant species as “rare” to BFA. The analyses show that the south-west of BFA is a center of national biodiversity and a potential “hotspot” for conservation. In addition to its high species richness this area harbors the highest number of rare species (409 species, 29%) including the endemic species.
bioRxiv | 2015
Alexander Zizka; Alexandre Antonelli
1. Large-scale species occurrence data from geo-referenced observations and collected specimens are crucial for analyses in ecology, evolution and biogeography. Despite the rapidly growing availability of such data, their use in evolutionary analyses is often hampered by tedious manual classification of point occurrences into operational areas, leading to a lack of reproducibility and concerns regarding data quality. 2. Here we present speciesgeocodeR, a user-friendly R-package for data cleaning, data exploration and data visualization of species point occurrences using discrete operational areas, and linking them to analyses invoking phylogenetic trees. 3. The three core functions of the package are 1) automated and reproducible data cleaning, 2) rapid and reproducible classification of point occurrences into discrete operational areas in an adequate format for subsequent biogeographic analyses, and 3) a comprehensive summary and visualization of species distributions to explore large datasets and ensure data quality. In addition, speciesgeocodeR facilitates the access and analysis of publicly available species occurrence data, widely used operational areas and elevation ranges. Other functionalities include the implementation of minimum occurrence thresholds and the visualization of coexistence patterns and range sizes. SpeciesgeocodeR accompanies a richly illustrated and easy-to-follow tutorial and help functions.
Systematic Biology | 2018
Daniele Silvestro; Marcelo Tejedor; Martha L. Serrano-Serrano; Oriane Loiseau; Victor Rossier; Jonathan Rolland; Alexander Zizka; Sebastian Höhna; Alexandre Antonelli; Nicolas Salamin
&NA; New World Monkeys (NWM) (platyrrhines) are one of the most diverse groups of primates, occupying today a wide range of ecosystems in the American tropics and exhibiting large variations in ecology, morphology, and behavior. Although the relationships among the almost 200 living species are relatively well understood, we lack robust estimates of the timing of origin, ancestral morphology, and geographic range evolution of the clade. Herein, we integrate paleontological and molecular evidence to assess the evolutionary dynamics of extinct and extant platyrrhines. We develop novel analytical frameworks to infer the evolution of body mass, changes in latitudinal ranges through time, and species diversification rates using a phylogenetic tree of living and fossil taxa. Our results show that platyrrhines originated 5‐10 million years earlier than previously assumed, dating back to the Middle Eocene. The estimated ancestral platyrrhine was small—weighing 0.4 kg—and matched the size of their presumed African ancestors. As the three platyrrhine families diverged, we recover a rapid change in body mass range. During the Miocene Climatic Optimum, fossil diversity peaked and platyrrhines reached their widest latitudinal range, expanding as far South as Patagonia, favored by warm and humid climate and the lower elevation of the Andes. Finally, global cooling and aridification after the middle Miocene triggered a geographic contraction of NWM and increased their extinction rates. These results unveil the full evolutionary trajectory of an iconic and ecologically important radiation of monkeys and showcase the necessity of integrating fossil and molecular data for reliably estimating evolutionary rates and trends.