Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandr A. Kalinin is active.

Publication


Featured researches published by Alexandr A. Kalinin.


Journal of the Royal Society Interface | 2018

Opportunities and obstacles for deep learning in biology and medicine

Travers Ching; Daniel Himmelstein; Brett K. Beaulieu-Jones; Alexandr A. Kalinin; Brian T. Do; Gregory P. Way; Enrico Ferrero; Paul-Michael Agapow; Michael Zietz; Michael M. Hoffman; Wei Xie; Gail Rosen; Benjamin J. Lengerich; Johnny Israeli; Jack Lanchantin; Stephen Woloszynek; Anne E. Carpenter; Avanti Shrikumar; Jinbo Xu; Evan M. Cofer; Christopher A. Lavender; Srinivas C. Turaga; Amr Alexandari; Zhiyong Lu; David J. Harris; Dave DeCaprio; Yanjun Qi; Anshul Kundaje; Yifan Peng; Laura Wiley

Deep learning describes a class of machine learning algorithms that are capable of combining raw inputs into layers of intermediate features. These algorithms have recently shown impressive results across a variety of domains. Biology and medicine are data-rich disciplines, but the data are complex and often ill-understood. Hence, deep learning techniques may be particularly well suited to solve problems of these fields. We examine applications of deep learning to a variety of biomedical problems—patient classification, fundamental biological processes and treatment of patients—and discuss whether deep learning will be able to transform these tasks or if the biomedical sphere poses unique challenges. Following from an extensive literature review, we find that deep learning has yet to revolutionize biomedicine or definitively resolve any of the most pressing challenges in the field, but promising advances have been made on the prior state of the art. Even though improvements over previous baselines have been modest in general, the recent progress indicates that deep learning methods will provide valuable means for speeding up or aiding human investigation. Though progress has been made linking a specific neural networks prediction to input features, understanding how users should interpret these models to make testable hypotheses about the system under study remains an open challenge. Furthermore, the limited amount of labelled data for training presents problems in some domains, as do legal and privacy constraints on work with sensitive health records. Nonetheless, we foresee deep learning enabling changes at both bench and bedside with the potential to transform several areas of biology and medicine.


international conference on image analysis and recognition | 2018

Deep Convolutional Neural Networks for Breast Cancer Histology Image Analysis

Alexander Rakhlin; Alexey A. Shvets; Vladimir Iglovikov; Alexandr A. Kalinin

Breast cancer is one of the main causes of cancer death worldwide. Early diagnostics significantly increases the chances of correct treatment and survival, but this process is tedious and often leads to a disagreement between pathologists. Computer-aided diagnosis systems showed potential for improving the diagnostic accuracy. In this work, we develop the computational approach based on deep convolution neural networks for breast cancer histology image classification. Hematoxylin and eosin stained breast histology microscopy image dataset is provided as a part of the ICIAR 2018 Grand Challenge on Breast Cancer Histology Images. Our approach utilizes several deep neural network architectures and gradient boosted trees classifier. For 4-class classification task, we report 87.2% accuracy. For 2-class classification task to detect carcinomas we report 93.8% accuracy, AUC 97.3%, and sensitivity/specificity 96.5/88.0% at the high-sensitivity operating point. To our knowledge, this approach outperforms other common methods in automated histopathological image classification. The source code for our approach is made publicly available at this https URL


bioRxiv | 2018

Paediatric Bone Age Assessment Using Deep Convolutional Neural Networks

Vladimir Iglovikov; Alexander Rakhlin; Alexandr A. Kalinin; Alexey A. Shvets

Skeletal bone age assessment is a common clinical practice to diagnose endocrine and metabolic disorders in child development. In this paper, we describe a deep learning approach to the problem of bone age assessment using data from the 2017 Pediatric Bone Age Challenge organized by the Radiological Society of North America. This dataset consists of 12,600 radiological images. Each radiograph in the dataset is an image of a left hand labeled with bone age and sex of a patient. Our approach introduces a comprehensive preprocessing protocol based on the positive mining technique. We use images of whole hands as well as specific hand parts for both training and prediction. This allows us to measure the importance of specific hand bones for automated bone age analysis. We further evaluate the performance of the suggested methods in the context of skeletal development stages. Our approach outperforms other common methods for bone age assessment.


bioRxiv | 2018

Automatic Instrument Segmentation in Robot-Assisted Surgery Using Deep Learning.

Alexey A. Shvets; Alexander Rakhlin; Alexandr A. Kalinin; Vladimir Iglovikov

Semantic segmentation of robotic instruments is an important problem for the robot-assisted surgery. One of the main challenges is to correctly detect an instrument’s position for the tracking and pose estimation in the vicinity of surgical scenes. Accurate pixel-wise instrument segmentation is needed to address this challenge. In this paper we describe our winning solution for MICCAI 2017 Endoscopic Vision SubChallenge: Robotic Instrument Segmentation and its further refinement. Our approach demonstrates an improvement over the state-of-the-art results using several novel deep neural network architectures. It addressed the binary segmentation problem, where every pixel in an image is labeled as an instrument or background from the surgery video feed. In addition, we solve a multi-class segmentation problem, in which we distinguish between different instruments or different parts of an instrument from the background. In this setting, our approach outper-forms other methods in every task subcategory for automatic instrument segmentation thereby providing state-of-the-art results for these problems. The source code for our solution is made publicly available at https://github.com/ternaus/robot-surgery-segmentation


computer vision and pattern recognition | 2018

3D Cell Nuclear Morphology: Microscopy Imaging Dataset and Voxel-Based Morphometry Classification Results

Alexandr A. Kalinin; Ari Allyn-Feuer; Alex Ade; Gordon-Victor Fon; Walter Meixner; David S. Dilworth; Jeffrey R. de Wet; Gerald A. Higgins; Gen Zheng; Amy L. Creekmore; John W. Wiley; James E. Verdone; Robert W. Veltri; Kenneth J. Pienta; Donald S. Coffey; Brian D. Athey; Ivo D. Dinov

Cell deformation is regulated by complex underlying biological mechanisms associated with spatial and temporal morphological changes in the nucleus that are related to cell differentiation, development, proliferation, and disease. Thus, quantitative analysis of changes in size and shape of nuclear structures in 3D microscopic images is important not only for investigating nuclear organization, but also for detecting and treating pathological conditions such as cancer. While many efforts have been made to develop cell and nuclear shape characteristics in 2D or pseudo-3D, several studies have suggested that 3D morphometric measures provide better results for nuclear shape description and discrimination. A few methods have been proposed to classify cell and nuclear morphological phenotypes in 3D, however, there is a lack of publicly available 3D data for the evaluation and comparison of such algorithms. This limitation becomes of great importance when the ability to evaluate different approaches on benchmark data is needed for better dissemination of the current state of the art methods for bioimage analysis. To address this problem, we present a dataset containing two different cell collections, including original 3D microscopic images of cell nuclei and nucleoli. In addition, we perform a baseline evaluation of a number of popular classification algorithms using 2D and 3D voxel-based morphometric measures. To account for batch effects, while enabling calculations of AUROC and AUPR performance metrics, we propose a specific cross-validation scheme that we compare with commonly used k-fold cross-validation. Original and derived imaging data are made publicly available on the project web-page: http://www.socr.umich.edu/projects/3d-cell-morphometry/data.html.


Pharmacogenomics | 2018

Deep learning in pharmacogenomics: from gene regulation to patient stratification

Alexandr A. Kalinin; Gerald A. Higgins; Narathip Reamaroon; S. M. Reza Soroushmehr; Ari Allyn-Feuer; Ivo D. Dinov; Kayvan Najarian; Brian D. Athey

This Perspective provides examples of current and future applications of deep learning in pharmacogenomics, including: identification of novel regulatory variants located in noncoding domains of the genome and their function as applied to pharmacoepigenomics; patient stratification from medical records; and the mechanistic prediction of drug response, targets and their interactions. Deep learning encapsulates a family of machine learning algorithms that has transformed many important subfields of artificial intelligence over the last decade, and has demonstrated breakthrough performance improvements on a wide range of tasks in biomedicine. We anticipate that in the future, deep learning will be widely used to predict personalized drug response and optimize medication selection and dosing, using knowledge extracted from large and complex molecular, epidemiological, clinical and demographic datasets.


international conference on management of data | 2017

SOCRAT Platform Design: A Web Architecture for Interactive Visual Analytics Applications

Alexandr A. Kalinin; Selvam Palanimalai; Ivo D. Dinov

The modern web is a successful platform for large scale interactive web applications, including visualizations. However, there are no established design principles for building complex visual analytics (VA) web applications that could efficiently integrate visualizations with data management, computational transformation, hypothesis testing, and knowledge discovery. This imposes a time-consuming design and development process on many researchers and developers. To address these challenges, we consider the design requirements for the development of a module-based VA system architecture, adopting existing practices of large scale web application development. We present the preliminary design and implementation of an open-source platform for Statistics Online Computational Resource Analytical Toolbox (SOCRAT). This platform defines: (1) a specification for an architecture for building VA applications with multi-level modularity, and (2) methods for optimizing module interaction, re-usage, and extension. To demonstrate how this platform can be used to integrate a number of data management, interactive visualization, and analysis tools, we implement an example application for simple VA tasks including raw data input and representation, interactive visualization and analysis.


bioRxiv | 2018

Evaluation of Methods for Cell Nuclear Structure Analysis from Microscopy Data

Alexandr A. Kalinin; Brian D. Athey; Ivo D. Dinov

Changes in cell nuclear architecture are regulated by complex biological mechanisms that associated with the altered functional properties of a cell. Quantitative analyses of structural alterations of nuclei and their compartments are important for understanding such mechanisms. In this work we present a comparison of approaches for nuclear structure classification, evaluated on 2D per-channel representations from a large 3D microscopy imaging dataset by maximum intensity projection. Specifically, we compare direct classification of pixel data from either raw intensity images or binary masks that contain only information about morphology of the object, but not texture. We evaluate a number of widely used classification algorithms using 2 different cross-validation schemes to assess batch effects. We compare obtained results with the previously reported baselines and discuss novel findings.


bioRxiv | 2018

Angiodysplasia Detection and Localization Using Deep Convolutional Neural Networks.

Alexey A. Shvets; Vladimir Iglovikov; Alexander Rakhlin; Alexandr A. Kalinin

Accurate detection and localization for angiodysplasia lesions is an important problem in early stage diagnostics of gastrointestinal bleeding and anemia. Gold-standard for angiodysplasia detection and localization is performed using wireless capsule endoscopy. This pill-like device is able to produce thousand of high enough resolution images during one passage through gastrointestinal tract. In this paper we present our winning solution for MICCAI 2017 Endoscopic Vision SubChallenge: Angiodysplasia Detection and Localization its further improvements over the state-of-the-art results using several novel deep neural network architectures. It address the binary segmentation problem, where every pixel in an image is labeled as an angiodysplasia lesions or background. Then, we analyze connected component of each predicted mask. Based on the analysis we developed a classifier that predict angiodysplasia lesions (binary variable) and a detector for their localization (center of a component). In this setting, our approach outperforms other methods in every task subcategory for angiodysplasia detection and localization thereby providing state-of-the-art results for these problems. The source code for our solution is made publicly available at https://github.com/ternaus/angiodysplasia-segmentation


Scientific Reports | 2018

Model-based and Model-free Machine Learning Techniques for Diagnostic Prediction and Classification of Clinical Outcomes in Parkinson’s Disease

Chao Gao; Hanbo Sun; Tuo Wang; Ming Tang; Nicolaas I. Bohnen; Martijn Muller; Talia Herman; Nir Giladi; Alexandr A. Kalinin; Cathie Spino; William T. Dauer; Jeffrey M. Hausdorff; Ivo D. Dinov

In this study, we apply a multidisciplinary approach to investigate falls in PD patients using clinical, demographic and neuroimaging data from two independent initiatives (University of Michigan and Tel Aviv Sourasky Medical Center). Using machine learning techniques, we construct predictive models to discriminate fallers and non-fallers. Through controlled feature selection, we identified the most salient predictors of patient falls including gait speed, Hoehn and Yahr stage, postural instability and gait difficulty-related measurements. The model-based and model-free analytical methods we employed included logistic regression, random forests, support vector machines, and XGboost. The reliability of the forecasts was assessed by internal statistical (5-fold) cross validation as well as by external out-of-bag validation. Four specific challenges were addressed in the study: Challenge 1, develop a protocol for harmonizing and aggregating complex, multisource, and multi-site Parkinson’s disease data; Challenge 2, identify salient predictive features associated with specific clinical traits, e.g., patient falls; Challenge 3, forecast patient falls and evaluate the classification performance; and Challenge 4, predict tremor dominance (TD) vs. posture instability and gait difficulty (PIGD). Our findings suggest that, compared to other approaches, model-free machine learning based techniques provide a more reliable clinical outcome forecasting of falls in Parkinson’s patients, for example, with a classification accuracy of about 70–80%.

Collaboration


Dive into the Alexandr A. Kalinin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gen Zheng

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexey A. Shvets

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Ade

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Alexander Rakhlin

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge