Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandra A. Roberts is active.

Publication


Featured researches published by Alexandra A. Roberts.


Biochemical Journal | 2013

Mechanistic studies of FosB: a divalent-metal-dependent bacillithiol-S-transferase that mediates fosfomycin resistance in Staphylococcus aureus

Alexandra A. Roberts; Sunil V. Sharma; Andrew Strankman; Shayla R. Duran; Mamta Rawat; Chris J. Hamilton

FosB is a divalent-metal-dependent thiol-S-transferase implicated in fosfomycin resistance among many pathogenic Gram-positive bacteria. In the present paper, we describe detailed kinetic studies of FosB from Staphylococcus aureus (SaFosB) that confirm that bacillithiol (BSH) is its preferred physiological thiol substrate. SaFosB is the first to be characterized among a new class of enzyme (bacillithiol-S-transferases), which, unlike glutathione transferases, are distributed among many low-G+C Gram-positive bacteria that use BSH instead of glutathione as their major low-molecular-mass thiol. The K(m) values for BSH and fosfomycin are 4.2 and 17.8 mM respectively. Substrate specificity assays revealed that the thiol and amino groups of BSH are essential for activity, whereas malate is important for SaFosB recognition and catalytic efficiency. Metal activity assays indicated that Mn(2+) and Mg(2+) are likely to be the relevant cofactors under physiological conditions. The serine analogue of BSH (BOH) is an effective competitive inhibitor of SaFosB with respect to BSH, but uncompetitive with respect to fosfomycin. Coupled with NMR characterization of the reaction product (BS-fosfomycin), this demonstrates that the SaFosB-catalysed reaction pathway involves a compulsory ordered binding mechanism with fosfomycin binding first followed by BSH which then attacks the more sterically hindered C-1 carbon of the fosfomycin epoxide. Disruption of BSH biosynthesis in S. aureus increases sensitivity to fosfomycin. Together, these results indicate that SaFosB is a divalent-metal-dependent bacillithiol-S-transferase that confers fosfomycin resistance on S. aureus.


The ISME Journal | 2012

Nodularin, a cyanobacterial toxin, is synthesized in planta by symbiotic Nostoc sp.

Michelle M. Gehringer; Lewis Adler; Alexandra A. Roberts; Michelle C. Moffitt; Troco Kaan Mihali; Toby Mills; Claus Fieker; Brett A. Neilan

The nitrogen-fixing bacterium, Nostoc, is a commonly occurring cyanobacterium often found in symbiotic associations. We investigated the potential of cycad cyanobacterial endosymbionts to synthesize microcystin/nodularin. Endosymbiont DNA was screened for the aminotransferase domain of the toxin biosynthesis gene clusters. Five endosymbionts carrying the gene were screened for bioactivity. Extracts of two isolates inhibited protein phosphatase 2A and were further analyzed using electrospray ionization mass spectrometry (ESI-MS)/MS. Nostoc sp. ‘Macrozamia riedlei 65.1’ and Nostoc sp. ‘Macrozamia serpentina 73.1’ both contained nodularin. High performance liquid chromatography (HPLC) HESI-MS/MS analysis confirmed the presence of nodularin at 9.55±2.4 ng μg−1 chlorophyll a in Nostoc sp. ‘Macrozamia riedlei 65.1’ and 12.5±8.4 ng μg−1 Chl a in Nostoc sp. ‘Macrozamia serpentina 73.1’ extracts. Further scans indicated the presence of the rare isoform [L-Har2] nodularin, which contains L-homoarginine instead of L-arginine. Nodularin was also present at 1.34±0.74 ng ml−1 (approximately 3 pmol per g plant ww) in the methanol root extracts of M. riedlei MZ65, while the presence of [L-Har2] nodularin in the roots of M. serpentina MZ73 was suggested by HPLC HESI-MS/MS analysis. The ndaA-B and ndaF genomic regions were sequenced to confirm the presence of the hybrid polyketide/non-ribosomal gene cluster. A seven amino-acid insertion into the NdaA-C1 domain of N. spumigena NSOR10 protein was observed in all endosymbiont-derived sequences, suggesting the transfer of the nda cluster from N. spumigena to terrestrial Nostoc species. This study demonstrates the synthesis of nodularin and [L-Har2] nodularin in a non-Nodularia species and the production of cyanobacterial hepatotoxin by a symbiont in planta.


Angewandte Chemie | 2011

Chemical and chemoenzymatic syntheses of bacillithiol: a unique low-molecular-weight thiol amongst low G + C Gram-positive bacteria

Sunil V. Sharma; Vishnu Karthik Jothivasan; Gerald L. Newton; Heather Upton; Judy I. Wakabayashi; Melissa G. Kane; Alexandra A. Roberts; Mamta Rawat; James J. La Clair; Chris J. Hamilton

In eukaryotes and Gram-negative bacteria, the cysteinyl tripeptide glutathione (GSH, Figure 1) is the predominant low-molecular-weight thiol. It plays a critical role in maintaining an intracellular reducing environment and serves many other important metabolic functions.⁽¹⁾ For instance, the reversible formation of GS-S-protein disulfides (glutathionylation) is an important post-translational modification for regulating protein function and protecting exposed cysteine residues from irreversible oxidative damage.⁽²⁾ Glutathione-Stransferases also mediate xenobiotic detoxification by S conjugation with GSH. Most Gram-positive bacteria lack GSH, but instead produce other, distinctly different low-molecular weight thiols. Gram-positive high G+C content actinobacteria produce mycothiol (MSH, Figure 1), which serves analogous functions to GSH.⁽³⁾ Low G+C Gram-positive bacteria (Firmicutes) produce neither GSH nor MSH and until recently the identity of their major, cysteine-derived, low-molecular-weight thiol has been elusive. In 2007, an unknown 398 Da thiol was observed in Bacillus anthracis cell extracts⁽⁴⁾ and in Bacillus subtilis as a mixed disulfide with the redox controlled ohr regulator protein (OhrR).⁽⁵⁾ The same thiol was subsequently isolated by treating Deinococcus radiodurans cell extracts with monobromobimane (mBBr) from which the structure of bacillithiol (BSH, 1) was then elucidated as its corresponding fluorescently labeled Sbimane (mB) derivative BSmB (3, Figure 1).⁽⁶⁾


Infection and Immunity | 2014

Importance of Bacillithiol in the Oxidative Stress Response of Staphylococcus aureus

Ana C Posada; Stacey L. Kolar; Renata Dusi; Patrice Francois; Alexandra A. Roberts; Chris J. Hamilton; George Y. Liu; Ambrose L. Cheung

ABSTRACT In Staphylococcus aureus, the low-molecular-weight thiol called bacillithiol (BSH), together with cognate S-transferases, is believed to be the counterpart to the glutathione system of other organisms. To explore the physiological role of BSH in S. aureus, we constructed mutants with the deletion of bshA (sa1291), which encodes the glycosyltransferase that catalyzes the first step of BSH biosynthesis, and fosB (sa2124), which encodes a BSH-S-transferase that confers fosfomycin resistance, in several S. aureus strains, including clinical isolates. Mutation of fosB or bshA caused a 16- to 60-fold reduction in fosfomycin resistance in these S. aureus strains. High-pressure liquid chromatography analysis, which quantified thiol extracts, revealed some variability in the amounts of BSH present across S. aureus strains. Deletion of fosB led to a decrease in BSH levels. The fosB and bshA mutants of strain COL and a USA300 isolate, upon further characterization, were found to be sensitive to H2O2 and exhibited decreased NADPH levels compared with those in the isogenic parents. Microarray analyses of COL and the isogenic bshA mutant revealed increased expression of genes involved in staphyloxanthin synthesis in the bshA mutant relative to that in COL under thiol stress conditions. However, the bshA mutant of COL demonstrated decreased survival compared to that of the parent in human whole-blood survival assays; likewise, the naturally BSH-deficient strain SH1000 survived less well than its BSH-producing isogenic counterpart. Thus, the survival of S. aureus under oxidative stress is facilitated by BSH, possibly via a FosB-mediated mechanism, independently of its capability to produce staphyloxanthin.


ChemBioChem | 2013

Biophysical Features of Bacillithiol, the Glutathione Surrogate of Bacillus subtilis and other Firmicutes

Sunil V. Sharma; Miriam Arbach; Alexandra A. Roberts; Colin Macdonald; Murree Groom; Chris J. Hamilton

Bacillithiol (BSH) is the major low‐molecular‐weight (LMW) thiol in many low‐G+C Gram‐positive bacteria (Firmicutes). Evidence now emerging suggests that BSH functions as an important LMW thiol in redox regulation and xenobiotic detoxification, analogous to what is already known for glutathione and mycothiol in other microorganisms. The biophysical properties and cellular concentrations of such LMW thiols are important determinants of their biochemical efficiency both as biochemical nucleophiles and as redox buffers. Here, BSH has been characterised and compared with other LMW thiols in terms of its thiol pKa, redox potential and thiol–disulfide exchange reactivity. Both the thiol pKa and the standard thiol redox potential of BSH are shown to be significantly lower than those of glutathione whereas the reactivities of the two compounds in thiol–disulfide reactions are comparable. The cellular concentration of BSH in Bacillus subtilis varied over different growth phases and reached up to 5 mM, which is significantly greater than previously observed from single measurements taken during mid‐exponential growth. These results demonstrate that the biophysical characteristics of BSH are distinctively different from those of GSH and that its cellular concentrations can reach levels much higher than previously reported.


Fems Microbiology Letters | 2012

Iron acquisition in the marine actinomycete genus Salinispora is controlled by the desferrioxamine family of siderophores

Alexandra A. Roberts; Andrew W. Schultz; Roland D. Kersten; Pieter C. Dorrestein; Bradley S. Moore

Many bacteria produce siderophores for sequestration of growth-essential iron. Analysis of the Salinispora genomes suggests that these marine actinomycetes support multiple hydroxamate- and phenolate-type siderophore pathways. We isolated and characterized desferrioxamines (DFOs) B and E from all three recognized Salinispora species and linked their biosyntheses in S. tropica CNB-440 and S. arenicola CNS-205 to the des locus through PCR-directed mutagenesis. Gene inactivation of the predicted iron-chelator biosynthetic loci sid2-4 did not abolish siderophore chemistry. Additionally, these pathways could not restore the native growth characteristics of the des mutants in iron-limited media, although differential iron-dependent regulation was observed for the yersiniabactin-like sid2 pathway. Consequently, this study indicates that DFOs are the primary siderophores in laboratory cultures of Salinispora.


Antioxidants & Redox Signaling | 2014

Redox Regulation in Bacillus subtilis: The Bacilliredoxins BrxA(YphP) and BrxB(YqiW) Function in De-Bacillithiolation of S-Bacillithiolated OhrR and MetE

Ahmed Gaballa; Bui Khanh Chi; Alexandra A. Roberts; Dörte Becher; Chris J. Hamilton; Haike Antelmann; John D. Helmann

AIMS In bacillithiol (BSH)-utilizing organisms, protein S-bacillithiolation functions as a redox switch in response to oxidative stress and protects critical Cys residues against overoxidation. In Bacillus subtilis, both the redox-sensing repressor OhrR and the methionine synthase MetE are redox controlled by S-bacillithiolation in vivo. Here, we identify pathways of protein de-bacillithiolation and test the hypothesis that YphP(BrxA) and YqiW(BrxB) act as bacilliredoxins (Brx) to remove BSH from OhrR and MetE mixed disulfides. RESULTS We present evidence that the BrxA and BrxB paralogs have de-bacillithiolation activity. This Brx activity results from attack of the amino-terminal Cys residue in a CGC motif on protein BSH-mixed disulfides. B. subtilis OhrR DNA-binding activity is eliminated by S-thiolation on its sole Cys residue. Both the BrxA and BrxB bacilliredoxins mediate de-bacillithiolation of OhrR accompanied by the transfer of BSH to the amino-terminal cysteine of their CGC active site motif. In vitro studies demonstrate that BrxB can restore DNA-binding activity to OhrR which is S-bacillithiolated, but not to OhrR that is S-cysteinylated. MetE is most strongly S-bacillithiolated at Cys719 in vitro and can be efficiently de-bacillithiolated by both BrxA and BrxB. INNOVATION AND CONCLUSION We demonstrate that BrxA and BrxB function in the reduction of BSH mixed protein disulfides with two natural substrates (MetE, OhrR). These results provide biochemical evidence for a new class of bacterial redox-regulatory proteins, the bacilliredoxins, which function analogously to glutaredoxins. Bacilliredoxins function in concert with other thiol-disulfide oxidoreductases to maintain redox homeostasis in response to disulfide stress conditions.


Biochemical and Biophysical Research Communications | 2013

Analysis of mutants disrupted in bacillithiol metabolism in Staphylococcus aureus.

Arishma Rajkarnikar; Andrew Strankman; Shayla R. Duran; Derek Vargas; Alexandra A. Roberts; Kathryn Barretto; Heather Upton; Chris J. Hamilton; Mamta Rawat

Bacillithiol (BSH), an α-anomeric glycoside of l-cysteinyl-d-glucosaminyl-l-malate, is a major low molecular weight thiol found in low GC Gram-positive bacteria, such as Staphylococcus aureus. Like other low molecular weight thiols, BSH is likely involved in protection against a number of stresses. We examined S. aureus transposon mutants disrupted in each of the three genes associated with BSH biosynthesis. These mutants are sensitive to alkylating stress, oxidative stress, and metal stress indicating that BSH and BSH-dependent enzymes are involved in protection of S. aureus. We further demonstrate that BshB, a deacetylase involved in the second step of BSH biosynthesis, also acts as a BSH conjugate amidase and identify S. aureus USA 300 LAC 2626 as a BSH-S-transferase, which is able to conjugate chlorodinitrobenzene, cerulenin, and rifamycin to BSH.


Journal of Bacteriology | 2007

Characterization of PPTNs, a Cyanobacterial Phosphopantetheinyl Transferase from Nodularia spumigena NSOR10

Janine Copp; Alexandra A. Roberts; Mohamed A. Marahiel; Brett A. Neilan

The phosphopantetheinyl transferases (PPTs) are a superfamily of essential enzymes required for the synthesis of a wide range of compounds, including fatty acids, polyketides, and nonribosomal peptide metabolites. These enzymes activate carrier proteins in specific biosynthetic pathways by transfer of a phosphopantetheinyl moiety. The diverse PPT superfamily can be divided into two families based on specificity and conserved sequence motifs. The first family is typified by the Escherichia coli acyl carrier protein synthase (AcpS), which is involved in fatty acid synthesis. The prototype of the second family is the broad-substrate-range PPT Sfp, which is required for surfactin biosynthesis in Bacillus subtilis. Most cyanobacteria do not encode an AcpS-like PPT, and furthermore, some of their Sfp-like PPTs belong to a unique phylogenetic subgroup defined by the PPTs involved in heterocyst differentiation. Here, we describe the first functional characterization of a cyanobacterial PPT based on a structural analysis and subsequent functional analysis of the Nodularia spumigena NSOR10 PPT. Southern hybridizations suggested that this enzyme may be the only PPT encoded in the N. spumigena NSOR10 genome. Expression and enzyme characterization showed that this PPT was capable of modifying carrier proteins resulting from both heterocyst glycoplipid synthesis and nodularin toxin synthesis. Cyanobacteria are a unique and vast source of bioactive metabolites; therefore, an understanding of cyanobacterial PPTs is important in order to harness the biotechnological potential of cyanobacterial natural products.


Biochemical Journal | 2013

Cross-functionalities of Bacillus deacetylases involved in bacillithiol biosynthesis and bacillithiol-S-conjugate detoxification pathways

Zhong Fang; Alexandra A. Roberts; Karissa Weidman; Sunil V. Sharma; Al Claiborne; Chris J. Hamilton; Patricia C. Dos Santos

BshB, a key enzyme in bacillithiol biosynthesis, hydrolyses the acetyl group from N-acetylglucosamine malate to generate glucosamine malate. In Bacillus anthracis, BA1557 has been identified as the N-acetylglucosamine malate deacetylase (BshB); however, a high content of bacillithiol (~70%) was still observed in the B. anthracis ∆BA1557 strain. Genomic analysis led to the proposal that another deacetylase could exhibit cross-functionality in bacillithiol biosynthesis. In the present study, BA1557, its paralogue BA3888 and orthologous Bacillus cereus enzymes BC1534 and BC3461 have been characterized for their deacetylase activity towards N-acetylglucosamine malate, thus providing biochemical evidence for this proposal. In addition, the involvement of deacetylase enzymes is also expected in bacillithiol-detoxifying pathways through formation of S-mercapturic adducts. The kinetic analysis of bacillithiol-S-bimane conjugate favours the involvement of BA3888 as the B. anthracis bacillithiol-S-conjugate amidase (Bca). The high degree of specificity of this group of enzymes for its physiological substrate, along with their similar pH-activity profile and Zn²⁺-dependent catalytic acid-base reaction provides further evidence for their cross-functionalities.

Collaboration


Dive into the Alexandra A. Roberts's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sunil V. Sharma

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janine Copp

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mamta Rawat

California State University

View shared research outputs
Top Co-Authors

Avatar

Michael McFadden

Taronga Conservation Society Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge