Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandra Acco is active.

Publication


Featured researches published by Alexandra Acco.


Journal of Ethnopharmacology | 2010

Antitumoral and antioxidant effects of a hydroalcoholic extract of cat's claw (Uncaria tomentosa) (Willd. Ex Roem. & Schult) in an in vivo carcinosarcoma model.

Arturo Alejandro Dreifuss; Amanda Leite Bastos-Pereira; Thiago Vinicius Ávila; Bruna da Silva Soley; Armando J. Rivero; José Luis Aguilar; Alexandra Acco

AIM OF THE STUDY The present work intended to study the antitumoral and antioxidant effects of Uncaria tomentosa (UT) hydroalcoholic extract in the Walker-256 cancer model. METHODS AND MATERIALS Walker-256 cells were subcutaneously inoculated in the pelvic limb of male Wistar rats. Daily gavage with UT extract (10, 50 or 100 mg kg(-1), Groups UT) or saline solution (Control, Group C) was subsequently initiated, until 14 days afterwards. For some parameters, a group of healthy rats (Baseline, Group B) was added. At the end of treatment the following parameters were evaluated: (a) tumor volume and mass; (b) plasmatic concentration of urea, alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyltransferase (GGT) and lactate dehydrogenase (LDH); (c) hepatic and tumoral activity of catalase (CAT) and superoxide dismutase (SOD), as well as the rate of lipid peroxidation (LPO) and gluthatione (GSH); and (d) hepatic glutathione-S-transferase (GST) activity. The reactivity of UT extract with the stable free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) was assessed in parallel. RESULTS UT hydroalcoholic extract successfully reduced the tumor growth. In addition, treatment with UT reduced the activity of AST, which had been increased as a result of tumor inoculation, thus attempting to return it to normal levels. UT did not reverse the increase of LDH and GGT plasma levels, although all doses were remarkably effective in reducing urea plasma levels. An important in vitro free radical-scavenging activity was detected at various concentrations of UT extract (1-300 microg mL(-1)). Treatment also resulted in increased CAT activity in liver, while decreasing it in tumor tissue. SOD activity was reduced in liver as well as in tumor, compared to Group C. No statistical significance concerning ALT, GST, LPO or GSH were observed. CONCLUSIONS This data represent an in vivo demonstration of both antitumoral and antioxidant effects of UT hydroalcoholic extract. The antineoplastic activity may result, partially at least, from the ability of UT to regulate redox and metabolism homeostasis.


Chemico-Biological Interactions | 2014

The FXR agonist 6ECDCA reduces hepatic steatosis and oxidative stress induced by ethanol and low-protein diet in mice

F.A.R. Lívero; Aline Maria Stolf; Arturo Alejandro Dreifuss; Amanda Leite Bastos-Pereira; Raphaella Chicorski; Liana Gomes de Oliveira; Carlos Eduardo Alves de Souza; Isabella Aviles Fabossi; I.S. Rabitto; Luiza Helena Gremski; Railson Henneberg; José Ederaldo Queiroz Telles; Ronald P. J. Oude Elferink; Alexandra Acco

BACKGROUND AND AIM Excessive ethanol consumption can lead to development of hepatic steatosis. Since the FXR receptor regulates adipose cell function and liver lipid metabolism, the aim of this work was to examine the effects of the FXR agonist 6ECDCA on alcoholic liver steatosis development and on oxidative stress induced by ethanol consumption. METHODS Swiss mice (n=24) received a low-protein diet (6%) and a liquid diet containing 10% ethanol or water for 6weeks. In the last 15days mice received oral treatment with 6ECDCA (3mgkg(-1)) or 1% tween (vehicle). The experimental groups (n=6) were: water+tween, water+6ECDCA, ethanol+tween and ethanol+6ECDCA. Moreover, as a diet control, we used a basal group (n=6), fed by a normal-proteic diet (23%) and water. After the treatment period, the animals were anesthetized for sample collection to perform plasma biochemistry assays, hepatic oxidative stress assays, hepatic cholesterol and triglycerides measurements, liver histology and hepatic gene expression. RESULTS Ethanol associated with low-protein diet induced hepatic oxidative stress, increased plasma transaminases and induced hepatic lipid accumulation. Many of these parameters were reversed by the administration of 6ECDCA, including amelioration of lipid accumulation and lipoperoxidation, and reduction of reactive oxygen species. These effects were possibly mediated by regulation of Srebpf1 and FAS gene expression, both reduced by the FXR agonist. CONCLUSIONS Our data demonstrated that 6ECDCA reverses the accumulation of lipids in the liver and decreases the oxidative stress induced by ethanol and low-protein diet. This FXR agonist is promising as a potential therapy for alcoholic liver steatosis.


Canadian Journal of Physiology and Pharmacology | 2010

Effects of Agaricus brasiliensis mushroom in Walker-256 tumor-bearing rats

Fernanda Menon Dias Jumes; Daiana Lugarini; Amanda Leite Bastos Pereira; Anabel de Oliveira; Adriana de Oliveira Christoff; Giani Andrea Linde; Juliana Silveira do Valle; Nelson Barros Colauto; Alexandra Acco

Agaricus brasiliensis is a mushroom native to São Paulo State, Brazil, that is studied for its medicinal proprieties. This work aimed to investigate the antitumoral activity of A. brasiliensis extracts and pure powdered basidiocarp preparation using Walker-256 (W256) tumor-bearing rats, a model for cancer-related cachexia studies. The rats were treated for 14 days by gavage (136 mg/kg) and at the end of the experiment tumors were collected to calculate mass and volume. Blood was collected for determination of plasma glucose, albumin, alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Hepatic and tumor enzymes indicating oxidative stress were also evaluated. The results showed that all 4 treatments (pure powdered basidiocarp and aqueous, acid, and alkaline extracts) significantly reduced tumor size and promoted gain in body weight. Plasmatic analysis showed a reduction in AST level and increased glycemia in the treated rats. Pure basidiocarp preparations improved the liver catalase and superoxide dismutase activity, but did not change the glutathione S-transferase activity. The data collected from the W256 tumor-bearing rats revealed the beneficial effects of A. brasiliensis in tumor treatment, mainly related to cachexia. The benefits can be partly related to antioxidant activity and to reduction of weight loss and tumor growth.


Hepatology Research | 2016

Molecular basis of alcoholic fatty liver disease: From incidence to treatment.

Francislaine Ar Lívero; Alexandra Acco

Alcoholic liver diseases have complex and multiple pathogenic mechanisms but still no effective treatment. Steatosis or alcoholic fatty liver disease (AFLD) has a widespread incidence and is the first step in the progression to more severe stages of alcoholic liver disease, with concomitant increases in morbidity and mortality rates. The ways in which this progression occurs and why some individuals are susceptible are still unanswered scientific questions. Research with animal models and clinical evidence have shown that it is a multifactorial disease that involves interactions between lipid metabolism, inflammation, the immune response and oxidative stress. Each of these pathways provides a better understanding of the pathogenesis of AFLD and contributes to the development of therapeutic strategies. This review emphasizes the importance of research on alcoholic steatosis based on incidence data, key pathogenic mechanisms and therapeutic interventions, and discusses perspectives on the progression of this disease.


PLOS ONE | 2013

Uncaria tomentosa Exerts Extensive Anti-Neoplastic Effects against the Walker-256 Tumour by Modulating Oxidative Stress and Not by Alkaloid Activity

Arturo Alejandro Dreifuss; Amanda Leite Bastos-Pereira; Isabella Aviles Fabossi; Francislaine Aparecida dos Reis Lívero; Aline Maria Stolf; Carlos Eduardo Alves de Souza; Liana de Oliveira Gomes; Rodrigo Polimeni Constantin; Aline Emmer Ferreira Furman; Regiane Lauriano Batista Strapasson; Simone A. Teixeira; Aleksander Roberto Zampronio; Marcelo N. Muscará; Maria Élida Alves Stefanello; Alexandra Acco

This study aimed to compare the anti-neoplastic effects of an Uncaria tomentosa (UT) brute hydroethanolic (BHE) extract with those of two fractions derived from it. These fractions are choroformic (CHCl3) and n-butanolic (BuOH), rich in pentacyclic oxindole alkaloids (POA) and antioxidant substances, respectively. The cancer model was the subcutaneous inoculation of Walker-256 tumour cells in the pelvic limb of male Wistar rat. Subsequently to the inoculation, gavage with BHE extract (50 mg.kg−1) or its fractions (as per the yield of the fractioning process) or vehicle (Control) was performed during 14 days. Baseline values, corresponding to individuals without tumour or treatment with UT, were also included. After treatment, tumour volume and mass, plasma biochemistry, oxidative stress in liver and tumour, TNF-α level in liver and tumour homogenates, and survival rates were analysed. Both the BHE extract and its BuOH fraction successfully reduced tumour weight and volume, and modulated anti-oxidant systems. The hepatic TNF-α level indicated a greater effect from the BHE extract as compared to its BuOH fraction. Importantly, both the BHE extract and its BuOH fraction increased the survival time of the tumour-bearing animals. Inversely, the CHCl3 fraction was ineffective. These data represent an in vivo demonstration of the importance of the modulation of oxidative stress as part of the anti-neoplastic activity of UT, as well as constitute evidence of the lack of activity of isolated POAs in the primary tumour of this tumour lineage. These effects are possibly resulting from a synergic combination of substances, most of them with antioxidant properties.


Hepatology | 2013

Defective bile salt biosynthesis and hydroxylation in mice with reduced cytochrome P450 activity

Cindy Kunne; Alexandra Acco; Simon Hohenester; Suzanne Duijst; Dirk R. de Waart; Alaleh Zamanbin; Ronald P. J. Oude Elferink

The difference in bile salt (BS) composition between rodents and humans is mainly caused by formation of muricholate in rodents as well as by efficient rehydroxylation of deoxycholic acid. The aim of this study was to characterize bile formation in a mouse model (Hrn mice) with hepatic disruption of the cytochrome p450 (CYP) oxidoreductase gene, encoding the single electron donor for all CYPs. Bile formation was studied after acute BS infusion or after feeding a BS‐supplemented diet for 3 weeks. Fecal BS excretion in Hrn mice was severely reduced to 7.6% ± 1.8% of wild‐type (WT), confirming strong reduction of (CYP‐mediated) BS synthesis. Hrn bile contained 48% ± 18% dihydroxy BS, whereas WT bile contained only 5% ± 1% dihydroxy BS. Upon tauroursodeoxycholate infusion, biliary BS output was equal in WT versus Hrn, indicating that canalicular secretion capacity was normal. In contrast, taurodeoxycholic acid (TDC) infusion led to markedly impaired bile flow and BS output, suggesting onset of cholestasis. Feeding a cholate‐supplemented diet (0.1%) resulted in a completely restored bile salt pool in Hrn mice, with 50% ± 9% TDC and 42% ± 10% taurocholic acid in bile, as opposed to 2% ± 1% and 80% ± 3% in WT mice, respectively. Under these conditions, biliary cholesterol secretion was strongly increased in Hrn mice, whereas serum alanine aminotransferase levels were decreased. Conclusion: Hrn mice have strongly impaired bile salt synthesis and (re)hydroxylation capacity and are more susceptible to acute TDC‐induced cholestasis. In this mouse model, a more‐human BS pool can be instilled by BS feeding, without hepatic damage, which makes Hrn mice an attractive model to study the effects of human BS. (HEPATOLOGY 2013)


Free Radical Biology and Medicine | 2016

Quercetin reduces manic-like behavior and brain oxidative stress induced by paradoxical sleep deprivation in mice

L.K.S. Kanazawa; Débora Dalla Vecchia; Etieli Wendler; P.A.S. Hocayen; Francislaine Aparecida dos Reis Lívero; Maria Carolina Stipp; Inara M.R. Barcaro; Alexandra Acco; Roberto Andreatini

Quercetin is a known antioxidant and protein kinase C (PKC) inhibitor. Previous studies have shown that mania involves oxidative stress and an increase in PKC activity. We hypothesized that quercetin affects manic symptoms. In the present study, manic-like behavior (hyperlocomotion) and oxidative stress were induced by 24h paradoxical sleep deprivation (PSD) in male Swiss mice. Both 10 and 40mg/kg quercetin prevented PSD-induced hyperlocomotion. Quercetin reversed the PSD-induced decrease in glutathione (GSH) levels in the prefrontal cortex (PFC) and striatum. Quercetin also reversed the PSD-induced increase in lipid peroxidation (LPO) in the PFC, hippocampus, and striatum. Pearsons correlation analysis revealed a negative correlation between locomotor activity and GSH in the PFC in sleep-deprived mice and a positive correlation between locomotor activity and LPO in the PFC and striatum in sleep-deprived mice. These results suggest that quercetin exerts an antimanic-like effect at doses that do not impair spontaneous locomotor activity, and the antioxidant action of quercetin might contribute to its antimanic-like effects.


Biochimica et Biophysica Acta | 2014

FXR-dependent reduction of hepatic steatosis in a bile salt deficient mouse model

Cindy Kunne; Alexandra Acco; Suzanne Duijst; Dirk R. de Waart; Coen C. Paulusma; Ingrid C. Gaemers; Ronald P. J. Oude Elferink

It has been established that bile salts play a role in the regulation of hepatic lipid metabolism. Accordingly, overt signs of steatosis have been observed in mice with reduced bile salt synthesis. The aim of this study was to identify the mechanism of hepatic steatosis in mice with bile salt deficiency due to a liver specific disruption of cytochrome P450 reductase. In this study mice lacking hepatic cytochrome P450 reductase (Hrn) or wild type (WT) mice were fed a diet supplemented with or without either 0.1% cholic acid (CA) or 0.025% obeticholic acid, a specific FXR-agonist. Feeding a CA-supplemented diet resulted in a significant decrease of plasma ALT in Hrn mice. Histologically, hepatic steatosis ameliorated after CA feeding and this was confirmed by reduced hepatic triglyceride content (115.5±7.3mg/g liver and 47.9±4.6mg/g liver in control- and CA-fed Hrn mice, respectively). The target genes of FXR-signaling were restored to normal levels in Hrn mice when fed cholic acid. VLDL secretion in both control and CA-fed Hrn mice was reduced by 25% compared to that in WT mice. In order to gain insight in the mechanism behind these bile salt effects, the FXR agonist also was administered for 3weeks. This resulted in a similar decrease in liver triglycerides, indicating that the effect seen in bile salt fed Hrn animals is FXR dependent. In conclusion, steatosis in Hrn mice is ameliorated when mice are fed bile salts. This effect is FXR dependent. Triglyceride accumulation in Hrn liver may partly involve impaired VLDL secretion.


Phytotherapy Research | 2017

Effects of Silymarin on Diabetes Mellitus Complications: A Review

Aline Maria Stolf; Cibele Campos Cardoso; Alexandra Acco

Diabetes mellitus is a common metabolic disorder that is caused by a deficit in the production of (type 1) or response to (type 2) insulin. Diabetes mellitus is characterized by a state of chronic hyperglycemia and such symptoms as weight loss, thirst, polyuria, and blurred vision. These disturbances represent one of the major causes of morbidity and mortality nowadays, despite available treatments, such as insulin, insulin secretagogues, insulin sensitizers, and oral hypoglycemic agents. However, many efforts have been made to discover new drugs for diabetes treatment, including medicinal plant extracts. Silymarin is a powder extract of the seeds from Silybum marianum, a plant from the Asteraceae family. The major active ingredients include four isomers: silybin, isosilybin, silychristin, and silydianin. Silymarin is indicated for the treatment of hepatic disorders, such as cirrhosis, chronic hepatitis, and gallstones. Moreover, several studies of other pathologies, including diabetes, sepsis, osteoporosis, arthritis, hypercholesterolemia, cancer, viral infections, and Alzheimers and Parkinsons diseases, have tested the effects of silymarin and reported promising results. This article reviews data from clinical, in vivo, and in vitro studies on the use of silymarin, with a focus on the complications of diabetes, including nephropathy, neuropathy, healing delays, oxidative stress, hepatotoxicity, and cardiomyopathy. Copyright


Toxicon | 2008

Effects of the venom and the dermonecrotic toxin LiRecDT1 of Loxosceles intermedia in the rat liver

Adriana de Oliveira Christoff; Anabel de Oliveira; Olga Meiri Chaim; Daiana Lugarini; Amanda Leite Bastos Pereira; Katia Sabrina Paludo; José Ederaldo Queiroz Telles; Adelar Bracht; Silvio Sanches Veiga; Alexandra Acco

Brown spider bites cause dermonecrotic lesions and systemic manifestations known as loxoscelism. The Loxosceles intermedia venom contains many active proteins, as phospholipase D. There are reports of increased levels of hepatic transaminases in humans with loxoscelism, but detailed studies about the action of the Loxosceles intermedia venom on the liver functions are lacking. The aim of this study was to investigate the effects of the venom and the dermonecrotic recombinant toxin 1 (LiRecDT1) in the liver of Wistar rats injected subcutaneously with venom (80 microg) or toxin (80 microg). After 6 and 12h the liver immunofluorescence was positive for venom and toxin. Hepatocytes from the venom group were tumefacted and apoptotic. There was leucocyte infiltration in the portal region combined with a high degree of steatosis in 12h. In the toxin group the histological alterations were less severe. Plasma levels of alanine aminotransferase, aspartate aminotransferase and gamma-glutamyl-transferase were significantly elevated only in the venom group in 6h. Hepatic metabolism was modified: the venom, but not LiRecDT1, reduced gluconeogenesis and ureagenesis from alanine and glycogen accumulation. These results show that the venom is hepatotoxic and that the dermonecrotic toxin is only partly responsible.

Collaboration


Dive into the Alexandra Acco's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aline Maria Stolf

Federal University of Paraná

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudia Rita Corso

Federal University of Paraná

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge