Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandra C. U. Furch is active.

Publication


Featured researches published by Alexandra C. U. Furch.


The Journal of Experimental Biology | 2009

Aphid watery saliva counteracts sieve-tube occlusion: a universal phenomenon?

Torsten Will; S. R. Kornemann; Alexandra C. U. Furch; W. F. Tjallingii; A. J. E. van Bel

SUMMARY Ca2+-binding proteins in the watery saliva of Megoura viciae counteract Ca2+-dependent occlusion of sieve plates in Vicia faba and so prevent the shut-down of food supply in response to stylet penetration. The question arises whether this interaction between aphid saliva and sieve-element proteins is a universal phenomenon as inferred by the coincidence between sieve-tube occlusion and salivation. For this purpose, leaf tips were burnt in a number of plant species from four different families to induce remote sieve-plate occlusion. Resultant sieve-plate occlusion in these plant species was counteracted by an abrupt switch of aphid behaviour. Each of the seven aphid species tested interrupted its feeding behaviour and started secreting watery saliva. The protein composition of watery saliva appeared strikingly different between aphid species with less than 50% overlap. Secretion of watery saliva seems to be a universal means to suppress sieve-plate occlusion, although the protein composition of watery saliva seems to diverge between species.


The Plant Cell | 2009

Sieve Element Ca2+ Channels as Relay Stations between Remote Stimuli and Sieve Tube Occlusion in Vicia faba

Alexandra C. U. Furch; Aart J. E. van Bel; Mark D. Fricker; Hubert H. Felle; Maike Fuchs; Jens B. Hafke

Damage induces remote occlusion of sieve tubes in Vicia faba by forisome dispersion, triggered during the passage of an electropotential wave (EPW). This study addresses the role of Ca2+ channels and cytosolic Ca2+ elevation as a link between EPWs and forisome dispersion. Ca2+ channel antagonists affect the initial phase of the EPW as well as the prolonged plateau phase. Resting levels of sieve tube Ca2+ of ∼50 nM were independently estimated using Ca2+-selective electrodes and a Ca2+-sensitive dye. Transient changes in cytosolic Ca2+ were observed in phloem tissue in response to remote stimuli and showed profiles similar to those of EPWs. The measured elevation of Ca2+ in sieve tubes was below the threshold necessary for forisome dispersion. Therefore, forisomes need to be associated with Ca2+ release sites. We found an association between forisomes and endoplasmic reticulum (ER) at sieve plates and pore-plasmodesma units where high-affinity binding of a fluorescent Ca2+ channel blocker mapped an increased density of Ca2+ channels. In conclusion, propagation of EPWs in response to remote stimuli is linked to forisome dispersion through transiently high levels of parietal Ca2+, release of which depends on both plasma membrane and ER Ca2+ channels.


Plant Physiology | 2005

Thermodynamic Battle for Photosynthate Acquisition between Sieve Tubes and Adjoining Parenchyma in Transport Phloem

Jens B. Hafke; Jan-Kees van Amerongen; Frits Kelling; Alexandra C. U. Furch; Frank Gaupels; Aart J. E. van Bel

In transport phloem, photoassimilates escaping from the sieve tubes are released into the apoplasmic space between sieve element (SE)/companion cell (CC) complexes (SE/CCs) and phloem parenchyma cells (PPCs). For uptake respective retrieval, PPCs and SE/CCs make use of plasma membrane translocators energized by the proton motive force (PMF). Their mutual competitiveness, which essentially determines the amount of photoassimilates translocated through the sieve tubes, therefore depends on the respective PMFs. We measured the components of the PMF, membrane potential and ΔpH, of SE/CCs and PPCs in transport phloem. Membrane potentials of SE/CCs and PPCs in tissue slices as well as in intact plants fell into two categories. In the first group including apoplasmically phloem-loading species (e.g. Vicia, Solanum), the membrane potentials of the SEs are more negative than those of the PPCs. In the second group including symplasmically phloem-loading species (e.g. Cucurbita, Ocimum), membrane potentials of SEs are equal to or slightly more positive than those of PPCs. Pure sieve tube sap collected from cut aphid stylets was measured with H+-selective microelectrodes. Under our experimental conditions, pH of the sieve tube saps was around 7.5, which is comparable to the pH of cytoplasmic compartments in parenchymatous cells. In conclusion, only the membrane potential appears to be relevant for the PMF-determined competition between SE/CCs and PPCs. The findings may imply that the axial sinks along the pathway withdraw more photoassimilates from the sieve tubes in symplasmically loading species than in apoplasmically loading species.


Frontiers in Plant Science | 2013

How phloem-feeding insects face the challenge of phloem-located defenses.

Torsten Will; Alexandra C. U. Furch; Matthias R. Zimmermann

Due to the high content of nutrient, sieve tubes are a primary target for pests, e.g., most phytophagous hemipteran. To protect the integrity of the sieve tubes as well as their content, plants possess diverse chemical and physical defense mechanisms. The latter mechanisms are important because they can potentially interfere with the food source accession of phloem-feeding insects. Physical defense mechanisms are based on callose as well as on proteins and often plug the sieve tube. Insects that feed from sieve tubes are potentially able to overwhelm these defense mechanisms using their saliva. Gel saliva forms a sheath in the apoplast around the stylet and is suggested to seal the stylet penetration site in the cell plasma membrane. In addition, watery saliva is secreted into penetrated cells including sieve elements; the presence of specific enzymes/effectors in this saliva is thought to interfere with plant defense responses. Here we detail several aspects of plant defense and discuss the interaction of plants and phloem-feeding insects. Recent agro-biotechnological phloem-located aphid control strategies are presented.


New Phytologist | 2008

Nitric oxide generation in Vicia faba phloem cells reveals them to be sensitive detectors as well as possible systemic transducers of stress signals

Frank Gaupels; Alexandra C. U. Furch; Torsten Will; Luis A. J. Mur; Karl-Heinz Kogel; Aart J. E. van Bel

Vascular tissue was recently shown to be capable of producing nitric oxide (NO), but the production sites and sources were not precisely determined. Here, NO synthesis was analysed in the phloem of Vicia faba in response to stress- and pathogen defence-related compounds. The chemical stimuli were added to shallow paradermal cortical cuts in the main veins of leaves attached to intact plants. NO production in the bare-lying phloem area was visualized by real-time confocal laser scanning microscopy using the NO-specific fluorochrome 4,5-diaminofluorescein diacetate (DAF-2 DA). Abundant NO generation in companion cells was induced by 500 microm salicylic acid (SA) and 10 microm hydrogen peroxide (H(2)O(2)), but the fungal elicitor chitooctaose was much less effective. Phloem NO production was found to be dependent on Ca(2+) and mitochondrial electron transport and pharmacological approaches found evidence for activity of a plant NO synthase but not a nitrate reductase. DAF fluorescence increased most strongly in companion cells and was occasionally observed in phloem parenchyma cells. Significantly, accumulation of NO in sieve elements could be demonstrated. These findings suggest that the phloem perceives and produces stress-related signals and that one mechanism of distal signalling involves the production and transport of NO in the phloem.


Journal of Experimental Botany | 2010

Remote-controlled stop of phloem mass flow by biphasic occlusion in Cucurbita maxima

Alexandra C. U. Furch; Matthias R. Zimmermann; Torsten Will; Jens B. Hafke; Aart J. E. van Bel

The relationships between damage-induced electropotential waves (EPWs), sieve tube occlusion, and stop of mass flow were investigated in intact Cucurbita maxima plants. After burning leaf tips, EPWs propagating along the phloem of the main vein were recorded by extra- and intracellular microelectrodes. The respective EPW profiles (a steep hyperpolarization/depolarization peak followed by a prolonged hyperpolarization/depolarization) probably reflect merged action and variation potentials. A few minutes after passage of the first EPW peak, sieve tubes gradually became occluded by callose, with maximum synthesis occurring ∼10 min after burning. Early stop of mass flow, well before completion of callose deposition, pointed to an occlusion mechanism preceding callose deposition. This obstruction of mass flow was inferred from the halt of carboxyfluorescein movement in sieve tubes and intensified secretion of aqueous saliva by feeding aphids. The early occlusion is probably due to proteins, as indicated by a dramatic drop in soluble sieve element proteins and a simultaneous coagulation of sieve element proteins shortly after the burning stimulus. Mass flow resumed 30–40 min after burning, as demonstrated by carboxyfluorescein movement and aphid activities. Stop of mass flow by Ca2+-dependent occlusion mechanisms is attributed to Ca2+ influx during EPW passage; the reversibility of the occlusion is explained by removal of Ca2+ ions.


Journal of Experimental Botany | 2014

Spread the news: systemic dissemination and local impact of Ca2+ signals along the phloem pathway

Aart J. E. van Bel; Alexandra C. U. Furch; Torsten Will; Stefanie V. Buxa; Rita Musetti; Jens B. Hafke

We explored the idea of whether electropotential waves (EPWs) primarily act as vehicles for systemic spread of Ca(2+) signals. EPW-associated Ca(2+) influx may trigger generation and amplification of countless long-distance signals along the phloem pathway given the fact that gating of Ca(2+)-permeable channels is a universal response to biotic and abiotic challenges. Despite fundamental differences, both action and variation potentials are associated with a sudden Ca(2+) influx. Both EPWs probably disperse in the lateral direction, which could be of essential functional significance. A vast set of Ca(2+)-permeable channels, some of which have been localized, is required for Ca(2+)-modulated events in sieve elements. There, Ca(2+)-permeable channels are clustered and create so-called Ca(2+) hotspots, which play a pivotal role in sieve element occlusion. Occlusion mechanisms play a central part in the interaction between plants and phytopathogens (e.g. aphids or phytoplasmas) and in transient re-organization of the vascular symplasm. It is argued that Ca(2+)-triggered systemic signalling occurs in partly overlapping waves. The forefront of EPWs may be accompanied by a burst of free Ca(2+) ions and Ca(2+)-binding proteins in the sieve tube sap, with a far-reaching impact on target cells. Lateral dispersion of EPWs may induce diverse Ca(2+) influx and handling patterns (Ca(2+) signatures) in various cell types lining the sieve tubes. As a result, a variety of cascades may trigger the fabrication of signals such as phytohormones, proteins, or RNA species released into the sap stream after product-related lag times. Moreover, transient reorganization of the vascular symplasm could modify cascades in disjunct vascular cells.


PLOS Pathogens | 2016

An RNAi-Based Control of Fusarium graminearum Infections Through Spraying of Long dsRNAs Involves a Plant Passage and Is Controlled by the Fungal Silencing Machinery.

Aline Koch; Dagmar Biedenkopf; Alexandra C. U. Furch; Lennart Weber; Oliver Rossbach; Eltayb Abdellatef; Lukas Linicus; Jan Johannsmeier; Lukas Jelonek; Alexander Goesmann; Vinitha Cardoza; John McMillan; Tobias Mentzel; Karl-Heinz Kogel

Meeting the increasing food and energy demands of a growing population will require the development of ground-breaking strategies that promote sustainable plant production. Host-induced gene silencing has shown great potential for controlling pest and diseases in crop plants. However, while delivery of inhibitory noncoding double-stranded (ds)RNA by transgenic expression is a promising concept, it requires the generation of transgenic crop plants which may cause substantial delay for application strategies depending on the transformability and genetic stability of the crop plant species. Using the agronomically important barley—Fusarium graminearum pathosystem, we alternatively demonstrate that a spray application of a long noncoding dsRNA (791 nt CYP3-dsRNA), which targets the three fungal cytochrome P450 lanosterol C-14α-demethylases, required for biosynthesis of fungal ergosterol, inhibits fungal growth in the directly sprayed (local) as well as the non-sprayed (distal) parts of detached leaves. Unexpectedly, efficient spray-induced control of fungal infections in the distal tissue involved passage of CYP3-dsRNA via the plant vascular system and processing into small interfering (si)RNAs by fungal DICER-LIKE 1 (FgDCL-1) after uptake by the pathogen. We discuss important consequences of this new finding on future RNA-based disease control strategies. Given the ease of design, high specificity, and applicability to diverse pathogens, the use of target-specific dsRNA as an anti-fungal agent offers unprecedented potential as a new plant protection strategy.


Plant Physiology | 2007

Functional Sieve Element Protoplasts

Jens B. Hafke; Alexandra C. U. Furch; Marco U. Reitz; Aart J. E. van Bel

Sieve element (SE) protoplasts were liberated by exposing excised phloem strands of Vicia faba to cell wall-degrading enzyme mixtures. Two types of SE protoplasts were found: simple protoplasts with forisome inclusions and composite twin protoplasts—two protoplasts intermitted by a sieve plate—of which one protoplast often includes a forisome. Forisomes are giant protein inclusions of SEs in Fabaceae. Membrane integrity of SE protoplasts was tested by application of CFDA, which was sequestered in the form of carboxyfluorescein. Further evidence for membrane intactness was provided by swelling of SE protoplasts and forisome dispersion in reaction to abrupt lowering of medium osmolarity. The absence of cell wall remnants as demonstrated by negative Calcofluor White staining allowed patch-clamp studies. At negative membrane voltages, the current-voltage relations of the SE protoplasts were dominated by a weak inward-rectifying potassium channel that was active at physiological membrane voltages of the SE plasma membrane. This channel had electrical properties that are reminiscent of those of the AKT2/3 channel family, localized in phloem cells of Arabidopsis (Arabidopsis thaliana). All in all, SE protoplasts promise to be a powerful tool in studying the membrane biology of SEs with inherent implications for the understanding of long-distance transport and signaling.


Plant Cell and Environment | 2010

Rapid cooling triggers forisome dispersion just before phloem transport stops

Michael R. Thorpe; Alexandra C. U. Furch; Peter E. H. Minchin; Jens Föller; Aart J. E. van Bel; Jens B. Hafke

Phloem transport stops transiently within dicot stems that are cooled rapidly, but the cause remains unknown. Now it is known that (1) rapid cooling depolarizes cell membranes giving a transient increase in cytoplasmic Ca(2+), and (2) a rise of free calcium triggers dispersion of forisomes, which then occlude sieve elements (SEs) of fabacean plants. Therefore, we compared the effects of rapid chilling on SE electrophysiology, phloem transport and forisomes in Vicia faba. Forisomes dispersed after rapid cooling with a delay that was longer for slower cooling rates. Phloem transport stopped about 20 s after forisome dispersion, and then transport resumed and forisomes re-condensed within similar time frames. Transport interruption and forisome dispersion showed parallel behaviour--a cooling rate-dependent response, transience and desensitization. Chilling induced both a fast and a slow depolarization of SE membranes, the electrical signature suggesting strongly that the cause of forisome dispersion was the transient promotion of SE free calcium. This apparent block of SEs by dispersed forisomes may be assisted by other Ca(2+)-dependent sealing proteins that are present in all dicots.

Collaboration


Dive into the Alexandra C. U. Furch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge