Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandra E. Porter is active.

Publication


Featured researches published by Alexandra E. Porter.


Proceedings of the National Academy of Sciences of the United States of America | 2012

The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation

Suwimon Boonrungsiman; Eileen Gentleman; Raffaella Carzaniga; Nicholas D. Evans; David W. McComb; Alexandra E. Porter; Molly M. Stevens

Mineralization is a ubiquitous process in the animal kingdom and is fundamental to human development and health. Dysfunctional or aberrant mineralization leads to a variety of medical problems, and so an understanding of these processes is essential to their mitigation. Osteoblasts create the nano-composite structure of bone by secreting a collagenous extracellular matrix (ECM) on which apatite crystals subsequently form. However, despite their requisite function in building bone and decades of observations describing intracellular calcium phosphate, the precise role osteoblasts play in mediating bone apatite formation remains largely unknown. To better understand the relationship between intracellular and extracellular mineralization, we combined a sample-preparation method that simultaneously preserved mineral, ions, and ECM with nano-analytical electron microscopy techniques to examine osteoblasts in an in vitro model of bone formation. We identified calcium phosphate both within osteoblast mitochondrial granules and intracellular vesicles that transported material to the ECM. Moreover, we observed calcium-containing vesicles conjoining mitochondria, which also contained calcium, suggesting a storage and transport mechanism. Our observations further highlight the important relationship between intracellular calcium phosphate in osteoblasts and their role in mineralizing the ECM. These observations may have important implications in deciphering both how normal bone forms and in understanding pathological mineralization.


Biomaterials | 2009

Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells.

Crystal Cheng; Karin H. Müller; Krzysztof Koziol; Jeremy N. Skepper; Paul A. Midgley; Mark E. Welland; Alexandra E. Porter

Multi-walled carbon nanotubes (MWNTs) have been proposed for use in many applications and concerns about their potential effect on human health have led to the interest in understanding the interactions between MWNTs and human cells. One important technique is the visualisation of the intracellular distribution of MWNTs. We exposed human macrophage cells to unpurified MWNTs and found that a decrease in cell viability was correlated with uptake of MWNTs due to mainly necrosis. Cells treated with purified MWNTs and the main contaminant Fe(2)O(3) itself yielded toxicity only from the nanotubes and not from the Fe(2)O(3). We used 3-D dark-field scanning transmission electron microscopy (DF-STEM) tomography of freeze-dried whole cells as well as confocal and scanning electron microscopy (SEM) to image the cellular uptake and distribution of unpurified MWNTs. We observed that unpurified MWNTs entered the cell both actively and passively frequently inserting through the plasma membrane into the cytoplasm and the nucleus. These suggest that MWNTs may cause incomplete phagocytosis or mechanically pierce through the plasma membrane and result in oxidative stress and cell death.


ACS Nano | 2010

pH-Dependent Toxicity of High Aspect Ratio ZnO Nanowires in Macrophages Due to Intracellular Dissolution

Karin H. Müller; Jaideep Kulkarni; Michael Motskin; Angela E. Goode; Peter Winship; Jeremy N. Skepper; Mary P. Ryan; Alexandra E. Porter

High-aspect ratio ZnO nanowires have become one of the most promising products in the nanosciences within the past few years with a multitude of applications at the interface of optics and electronics. The interaction of zinc with cells and organisms is complex, with both deficiency and excess causing severe effects. The emerging significance of zinc for many cellular processes makes it imperative to investigate the biological safety of ZnO nanowires in order to guarantee their safe economic exploitation. In this study, ZnO nanowires were found to be toxic to human monocyte macrophages (HMMs) at similar concentrations as ZnCl(2). Confocal microscopy on live cells confirmed a rise in intracellular Zn(2+) concentrations prior to cell death. In vitro, ZnO nanowires dissolved very rapidly in a simulated body fluid of lysosomal pH, whereas they were comparatively stable at extracellular pH. Bright-field transmission electron microscopy (TEM) showed a rapid macrophage uptake of ZnO nanowire aggregates by phagocytosis. Nanowire dissolution occurred within membrane-bound compartments, triggered by the acidic pH of the lysosomes. ZnO nanowire dissolution was confirmed by scanning electron microscopy/energy-dispersive X-ray spectrometry. Deposition of electron-dense material throughout the ZnO nanowire structures observed by TEM could indicate adsorption of cellular components onto the wires or localized zinc-induced protein precipitation. Our study demonstrates that ZnO nanowire toxicity in HMMs is due to pH-triggered, intracellular release of ionic Zn(2+) rather than the high-aspect nature of the wires. Cell death had features of necrosis as well as apoptosis, with mitochondria displaying severe structural changes. The implications of these findings for the application of ZnO nanowires are discussed.


Biomaterials | 2011

Spherical bioactive glass particles and their interaction with human mesenchymal stem cells in vitro

Sheyda Labbaf; Olga Tsigkou; Karin H. Müller; Molly M. Stevens; Alexandra E. Porter; Julian R. Jones

Sub-micron particles of bioactive glass (SMBGs) with composition 85 mol% SiO(2) and 15 mol% CaO were synthesised and characterised. Bioactivity was demonstrated by the formation of calcium apatite following 5 days immersion in simulated body fluid (SBF). The effect of a 24 h exposure of SMBGs (100 μg/ml, 150 μg/ml, 200 μg/ml) to human mesenchymal stem cells (hMSCs) on cell viability, metabolic activity and proliferation were determined using the LIVE/DEAD, MTT, total DNA and LDH assays after 1, 4 and 7 days of culture. None of the SMBG concentrations caused significant cytotoxicity at 1 and 4 days, but the doses of 150 and 200 μg/ml significantly decreased hMSC metabolic activity after 7 days of culture. Cell proliferation decreased as SMBG concentration increased; however none of the SMBGs tested had a significant effect on DNA quantity compared to the control. Confocal microscopy confirmed cellular uptake and localisation of the SMBGs in the hMSC cytoskeleton. Transmission electron microscopy revealed that the SMBGs localised inside the cell cytoplasm and cell endosomes. These findings are important for assessing the toxicity of sub-micron particles that may either be used as injectables for bone regeneration or generated by wear or degradation of bioactive glass scaffolds.


ACS Nano | 2009

Uptake of Noncytotoxic Acid-Treated Single-Walled Carbon Nanotubes into the Cytoplasm of Human Macrophage Cells

Alexandra E. Porter; Mhairi Gass; James S. Bendall; Karin H. Müller; Angela E. Goode; Jeremy N. Skepper; Paul A. Midgley; Mark E. Welland

Water-soluble single-walled nanotubes (SWNTs) are being tested as contrast agents for medical imaging and for the delivery of therapeutically active molecules to target cells. However, before they become used commercially, it will be essential to establish their subcellular distribution and whether they are cytotoxic. Here we characterize uptake of unlabeled, acid-treated, water-soluble SWNTs by human monocyte derived macrophage cells using a combination of Raman spectroscopy and analytical electron microscopy and compare our findings to previous work on unpurified SWNTs. Raman spectroscopy demonstrated that acid-treated SWNTs had a greater number of functional groups on the carbon walls than nontreated SWNT. The acid-treated SWNTs were less aggregated within cells than unpurified SWNTs. Bundles, and also individual acid-treated SWNTs, were found frequently inside lysosomes and also the cytoplasm, where they caused no significant changes in cell viability or structure even after 4 days of exposure.


Bone | 2010

Osteopontin Deficiency Increases Bone Fragility but Preserves Bone Mass

Philipp J. Thurner; Carol Chen; Sophi S. Ionova-Martin; Luling Sun; Adam Harman; Alexandra E. Porter; Joel W. Ager; Robert O. Ritchie; Tamara Alliston

The ability of bone to resist catastrophic failure is critically dependent upon the material properties of bone matrix, a composite of hydroxyapatite, collagen type I, and noncollagenous proteins. These properties include elastic modulus, hardness, and fracture toughness. Like other aspects of bone quality, matrix material properties are biologically-defined and can be disrupted in skeletal disease. While mineral and collagen have been investigated in greater detail, the contribution of noncollagenous proteins such as osteopontin to bone matrix material properties remains unclear. Several roles have been ascribed to osteopontin in bone, many of which have the potential to impact material properties. To elucidate the role of osteopontin in bone quality, we evaluated the structure, composition, and material properties of bone from osteopontin-deficient mice and wild-type littermates at several length scales. Most importantly, the results show that osteopontin deficiency causes a 30% decrease in fracture toughness, suggesting an important role for OPN in preventing crack propagation. This significant decline in fracture toughness is independent of changes in whole bone mass, structure, or matrix porosity. Using nanoindentation and quantitative backscattered electron imaging to evaluate osteopontin-deficient bone matrix at the micrometer level, we observed a significant reduction in elastic modulus and increased variability in calcium concentration. Matrix heterogeneity was also apparent at the ultrastructural level. In conclusion, we find that osteopontin is essential for the fracture toughness of bone, and reduced toughness in osteopontin-deficient bone may be related to the increased matrix heterogeneity observed at the micro-scale. By exploring the effects of osteopontin deficiency on bone matrix material properties, composition and organization, this study suggests that reduced fracture toughness is one mechanism by which loss of noncollagenous proteins contribute to bone fragility.


Nano Letters | 2009

Surface-Stress-Induced Mott Transition and Nature of Associated Spatial Phase Transition in Single Crystalline VO2 Nanowires

Jung Inn Sohn; Heung Jin Joo; Docheon Ahn; Hyun Hwi Lee; Alexandra E. Porter; Kinam Kim; Dae Joon Kang; Mark E. Welland

We demonstrate that the Mott metal-insulator transition (MIT) in single crystalline VO(2) nanowires is strongly mediated by surface stress as a consequence of the high surface area to volume ratio of individual nanowires. Further, we show that the stress-induced antiferromagnetic Mott insulating phase is critical in controlling the spatial extent and distribution of the insulating monoclinic and metallic rutile phases as well as the electrical characteristics of the Mott transition. This affords an understanding of the relationship between the structural phase transition and the Mott MIT.


Nanoscale | 2011

Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging

Khuloud T. Al-Jamal; Hannah Nerl; Karin H. Müller; Hanene Ali-Boucetta; Shouping Li; Peter D. Haynes; Joerg R. Jinschek; Maurizio Prato; Alberto Bianco; Kostas Kostarelos; Alexandra E. Porter

Carbon nanotubes (CNTs) are being investigated for a variety of biomedical applications. Despite numerous studies, the pathways by which carbon nanotubes enter cells and their subsequent intracellular trafficking and distribution remain poorly determined. Here, we use 3-D electron tomography techniques that offer optimum enhancement of contrast between carbon nanotubes and the plasma membrane to investigate the mechanisms involved in the cellular uptake of shortened, functionalised multi-walled carbon nanotubes (MWNT-NH(3)(+)). Both human lung epithelial (A549) cells, that are almost incapable of phagocytosis and primary macrophages, capable of extremely efficient phagocytosis, were used. We observed that MWNT-NH(3)(+) were internalised in both phagocytic and non-phagocytic cells by any one of three mechanisms: (a) individually via membrane wrapping; (b) individually by direct membrane translocation; and (c) in clusters within vesicular compartments. At early time points following intracellular translocation, we noticed accumulation of nanotube material within various intracellular compartments, while a long-term (14-day) study using primary human macrophages revealed that MWNT-NH(3)(+) were able to escape vesicular (phagosome) entrapment by translocating directly into the cytoplasm.


Bone | 2010

Reduced size-independent mechanical properties of cortical bone in high-fat diet-induced obesity

Sophi S. Ionova-Martin; S.H. Do; Holly D. Barth; M. Szadkowska; Alexandra E. Porter; Joel W. Ager; Tamara Alliston; Christian Vaisse; Robert O. Ritchie

Overweight and obesity are rapidly expanding health problems in children and adolescents. Obesity is associated with greater bone mineral content that might be expected to protect against fracture, which has been observed in adults. Paradoxically, however, the incidence of bone fractures has been found to increase in overweight and obese children and adolescents. Prior studies have shown some reduced mechanical properties as a result of high-fat diet (HFD) but do not fully address size-independent measures of mechanical properties, which are important to understand material behavior. To clarify the effects of HFD on the mechanical properties and microstructure of bone, femora from C57BL/6 mice fed either a HFD or standard laboratory chow (Chow) were evaluated for structural changes and tested for bending strength, bending stiffness and fracture toughness. Here, we find that in young, obese, high-fat fed mice, all geometric parameters of the femoral bone, except length, are increased, but strength, bending stiffness, and fracture toughness are all reduced. This increased bone size and reduced size-independent mechanical properties suggests that obesity leads to a general reduction in bone quality despite an increase in bone quantity; yield and maximum loads, however, remained unchanged, suggesting compensatory mechanisms. We conclude that diet-induced obesity increases bone size and reduces size-independent mechanical properties of cortical bone in mice. This study indicates that bone quantity and bone quality play important compensatory roles in determining fracture risk.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Gold–silica quantum rattles for multimodal imaging and therapy

Mathew Hembury; Ciro Chiappini; Sergio Bertazzo; Tammy L. Kalber; Glenna L. Drisko; Olumide Ogunlade; Simon Walker-Samuel; Katla Sai Krishna; Coline Jumeaux; Paul C. Beard; Challa S. S. R. Kumar; Alexandra E. Porter; Mark F. Lythgoe; Cédric Boissière; Clément Sanchez; Molly M. Stevens

Significance Therapeutic and diagnostic nanoparticles combine multiple functionalities to improve efficacy of treatment but often require assembling complex systems at the expense of overall performance. Here we present a simple strategy to synthesize a hybrid, rattle-like, gold–silica nanoparticle that very efficiently combines therapy and imaging in an animal model. The nanoparticle design is uniquely centered on enabling the use of gold quantum dots (<2 nm) in biological systems. The resulting nanoparticles are highly biocompatible and display emergent photonic and magnetic properties matching and in some instances outperforming state-of-the-art nanotechnology-based medical agents for each of the functionalities investigated, promising a tighter integration between imaging and therapy. Gold quantum dots exhibit distinctive optical and magnetic behaviors compared with larger gold nanoparticles. However, their unfavorable interaction with living systems and lack of stability in aqueous solvents has so far prevented their adoption in biology and medicine. Here, a simple synthetic pathway integrates gold quantum dots within a mesoporous silica shell, alongside larger gold nanoparticles within the shell’s central cavity. This “quantum rattle” structure is stable in aqueous solutions, does not elicit cell toxicity, preserves the attractive near-infrared photonics and paramagnetism of gold quantum dots, and enhances the drug-carrier performance of the silica shell. In vivo, the quantum rattles reduced tumor burden in a single course of photothermal therapy while coupling three complementary imaging modalities: near-infrared fluorescence, photoacoustic, and magnetic resonance imaging. The incorporation of gold within the quantum rattles significantly enhanced the drug-carrier performance of the silica shell. This innovative material design based on the mutually beneficial interaction of gold and silica introduces the use of gold quantum dots for imaging and therapeutic applications.

Collaboration


Dive into the Alexandra E. Porter's collaboration.

Top Co-Authors

Avatar

Mary P. Ryan

London Centre for Nanotechnology

View shared research outputs
Top Co-Authors

Avatar

Teresa D. Tetley

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Shu Chen

London Centre for Nanotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kian Fan Chung

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ioannis Theodorou

London Centre for Nanotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge