Alexandra Fedoseeva
Belgorod State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexandra Fedoseeva.
Physics of Metals and Metallography | 2015
Alexandra Fedoseeva; P. A. Kozlov; Valeriy Dudko; V. N. Skorobogatykh; I. A. Shchenkova; Rustam Kaibyshev
In this work, we have investigated microstructural changes in steel 10Kh9V2MFBR (analog of P02 steel) after long-term creep tests at a temperature of 600°C under an initial stress of 137 MPa. Time to rupture was found to be more than 40000 h. It has been established that, in the zone of grips and in the neck region of the sample, the size of the particles of the M23C6 carbides increases from 85 nm to 152 nm and 182 nm, respectively. In addition, large particles of the Laves phase with an average size of 295 nm are separated. The particles of these phases are located along high-angle boundaries. During prolonged aging and creep, the transformation of the M(C,N) particles enriched in V into the Z phase occurs. The average size of particles of the Z phase after prolonged ageing was 48 nm; after creep, it reached 97 nm. The size of M(C,N) particles enriched by Nb increases from 26 nm after tempering to 55 nm after prolonged aging and creep. It has been established that, in spite of an increase in the transverse size of the laths of tempered martensite from 0.4 to 0.9 µm in the neck of the sample, the misorientation of the lath boundaries does not increase. No recrystallization processes were found to develop in the steel during creep.
Physics of Metals and Metallography | 2015
Valeriy Dudko; Alexandra Fedoseeva; Andrey Belyakov; Rustam Kaibyshev
The deformation behavior and the microstructure evolution under the creep of 10Kh9V2MFBR steel (Russian analog of the P92 steel) (in wt %, Fe–8.9% Cr–0.05% Si–0.2% Mn–1.9% W–0.5% Mo–0.25% V–0.07Nb–0.08% N–0.01% B) with the standard (0.1%) and lowered (0.018%) carbon contents have been investigated. After the heat treatment, which included normalizing at 1050°C and tempering at 720–750°C, carbides M23C6 and carbonitrides M(C,N) are formed in the 10Kh9V2MFBR steel, while in the 02Kh9V2MFBR steel (modified P92 steel), carbides M23C6, nitrides M2N, and carbonitrides M(C,N) as well as δ-ferrite (23%) were found. The measurements of hardness and tensile tests at room and elevated temper-atures did not reveal substantial distinctions in the short-term mechanical properties of both steels. The hardness of steels after tempering was 220 HB. At the same time, the creep characteristics of the steels were found to be different. A decrease in the carbon content leads to an increase in the long-term creep strength and creep limit at 650°C for short-term tests with time-to-fracture shorter than 103 h. The time to fracture of steels with various carbon contents is almost the same in long-term creep tests. Factor responsible for such effect of carbon on the creep strength are discussed.
Materials Science Forum | 2016
Rustam Kaibyshev; Roman Mishnev; Alexandra Fedoseeva; Nadezhda Dudova
Tempered martensite lath structure (TMLS) plays a vital role in creep resistance of high chromium martensitic steels. Under creep conditions the TMLS could be stabilized by three agents: (i) a dispersion of boundary M23C6 carbides and Laves phase; (ii) a dispersion of M(C,N) carbonitrides, which are homogeneously distributed within ferritic matrix; (iii) substitutional alloying element within ferritic matrix. The boundary particles exert a large Zener drag force which effectively hinders migration of low-and high-angle boundaries. A dispersion of M(C,N) carbonitrides both within ferritic matrix and lath boundaries provides the pinning of mobile dislocations. This process is responsible for reliving long-range elastic stress field originated from lath boundaries. In addition, M(C,N) carbonitrides provide high threshold stress. Substitutional elements as W and Mo effectively slowing down diffusion in ferritic matrix retard climb of lattice dislocation that also prevents the aforementioned knitting reaction. The suppression of knitting reaction between lattice dislocation and low-angle boundaries prevents their transformation to subboundaries by concurrent operation of all three agent types. Depletion of W and Mo from solid solution leads to the occurrence of static recovery and precipitation of Laves phase at boundaries under long-term aging. This process is responsible for creep strength breakdown. The strain-induced formation of Z-phase at the expense of V-rich M(C,N) carbonitrides highly facilitates this process. However, slow strain-induced coarsening of M23C6 carbides and M(C,N) carbonitrides provides the suppression of the knitting reaction between mobile lattice dislocations and intrinsic dislocations of lath boundaries and replacement of TMLS by subgrain structure. Ostwald ripening of boundary M23C6 carbides and Laves phase leads to rapid creep rate increase with strain in tertiary creep and premature rupture owing to the formation of subgrain structure replaced TMLS and further subgrain growth.
Physics of Metals and Metallography | 2017
Alexandra Fedoseeva; Nadezhda Dudova; Rustam Kaibyshev
The effect of stresses on the microstructure and dispersed particles in a heating-performance Fe‒0.12C–0.06Si–0.04Ni–0.2Mn–9.5Cr–3.2Co–0.45Mo–3.1W–0.2V–0.06Nb–0.005B–0.05N (wt %) steel has been studied under long-term strength tests at Т = 650°C under initial applied stresses ranging from 220 to 100 MPa with a step of 20 MPa. Under an applied stress of 160 MPa, which corresponds to a time to fracture of 1703 h, a transfer from short- to long-term creep takes place. It has been shown that alloying with 3% Co and an increase in W content to 3% significantly increase the short-term creep resistance and slightly increase the long-term strength upon tests by more than 104 h. The transfer from short- to the long-term creep is accompanied by substantial changes in the microstructure of the steel. Under long-term creep, the solid solution became depleted of tungsten and of molybdenum down to the thermodynamically equilibrium content of these elements in the solid solution, which leads to the precipitation of a large amount of fine particles of the Laves phase at the boundaries of laths and prior austenitic grains. At a time to fracture of more than 4 × 103 h, the coalescence of the M23С6 carbides and Laves-phase particles occurs, which causes the transformation of the structure of fine tempered martensite lath structure into a subgrained structure.
Materials Science Forum | 2016
Alexandra Fedoseeva; Nadezhda Dudova; Rustam Kaibyshev
Microstructural evolution in a 9Cr-3Co-3W-0.2V-0.06Nb-0.05N-0.005B steel crept at T=650°C under an applied stress of 140 MPa up to strains of 1, 3, 5.75 and 12%, which represent primary, secondary and tertiary creep stages and rupture, respectively, was studied. The steel was initially normalized from 1050°C, and finally tempered at 750°C for 3h. After tempering the boundaries of tempered martensite lath structure (TMLS) were decorated by M23C6 carbides, M6C carbides and Laves phase particles. The 3% W additives provide the narrow size distribution of the boundary particles excepting M6C carbides. The depletion of thermodynamically none-equilibrium content of W from the solid solution during creep leads to following events. (i) Continuous precipitation of small Laves phase particles occurs during all creep stages and results in the formation of bimodal size distribution. As a result, the average size of Laves phase particles remains unchanged during creep. (ii) Coarsening of M23C6 carbides starts to occur only at the transition to tertiary creep. (iii) Transformation of laths to subgrains followed by their growth is observed during all stages of creep. The density of particle located at lath/subgrain boundaries decreases from 5.6 to 2.6 μm-1 during creep up to rupture. However, no full transformation of TMLS into subgrain structure has been revealed.
Archive | 2016
Alexandra Fedoseeva; Nadezhda Dudova; Rustam Kaibyshev
Creep strength of martensitic steels under creep conditions is critically dependent on stability of TMLS. Its transformation to well-defined subgrain structure followed by migration of subgrain boundaries corresponds with loss of creep resistance. The onset of migration of lath/subgrain boundaries in a Co-modified P92-type steels upon creep is attributed to a balance between driving and retarding forces. Both driving forces due to high dislocation density within lath interior and energy of low-angle boundaries give a rise their migration. Zener drag pressure is a major retarding force. The pinning pressure associates with a dispersion of M23C6 carbides situated on boundaries of prior austenite grains, packet, blocks and laths gives the main contribution to overall drag pressure. Under creep conditions the particles of Laves phase precipitate on these boundaries and exert additional drag force. MX carbonitrides homogeneously distributed within the ferritic matrix provides low value of Zener drag pressure.
Materials Science Forum | 2014
Valeriy Dudko; Alexandra Fedoseeva; Pavel Kozlov; Vladimir Skorobogatykh; Izabella Schenkova; Rustam Kaibyshev
The effect of long-term creep at 600°C under 137 MPa on the microstructure of a P92-type steel was investigated. The microstructure after tempering consisted of laths with an average thickness of 400 nm. Dispersion of secondary phases consists of M23C6 carbides with an average size of 85 nm located mainly on lath, block and prior austenite boundaries and MX carbonitrides with average size of 31 nm homogeniously distributed throughout. Creep with duration of 40738 hours led to coarsening of M23C6 carbides up to 182 nm. Precipitation of Laves phase with an average size of 290 nm took place in both grip and gauge portions of ruptured specimen. Vanadium-rich MX particles were replaced by particles of Z-phase with sizes of 97 and 48 nm after long-term creep and aging, respectively. The average misorientation of the lath boundaries was approximately 2° and scarcely varied during creep, while the mean lath thickness increased to 890 nm in gauge section of ruptured specimen and remained essentially unchanged in the grip section. Dislocation density decreased slightly under long-range aging and creep.
Materials Science and Engineering A-structural Materials Properties Microstructure and Processing | 2016
Alexandra Fedoseeva; Nadezhda Dudova; Rustam Kaibyshev
Journal of Materials Science | 2016
Alexandra Fedoseeva; Nadya Dudova; Uwe Glatzel; Rustam Kaibyshev
Journal of Materials Science | 2017
Alexandra Fedoseeva; Nadezhda Dudova; Rustam Kaibyshev