Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandra I. F. Blakemore is active.

Publication


Featured researches published by Alexandra I. F. Blakemore.


Human Genetics | 1993

Polymorphism in human IL-1 receptor antagonist gene intron 2 is caused by variable numbers of an 86-bp tandem repeat

Joanna K. Tarlow; Alexandra I. F. Blakemore; Andrew Lennard; Roberto Solari; Howard N. Hughes; Alexander Steinkasserer; Gordon W. Duff

We have investigated the polymorphism in intron 2 of the interleukin-1 receptor antagonist gene and identified two new alleles of the system. We have shown that the polymorphism is caused by the variable copy number of an 86-bp sequence, by using the polymerase chain reaction and primers immediately flanking the repeat region, and by direct sequencing. The repeat region contains three potential protein-binding sites and therefore the variable copy number may have functional significance.


Nature Genetics | 2009

Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations.

David Meyre; Jérôme Delplanque; Jean-Claude Chèvre; Cécile Lecoeur; Stéphane Lobbens; Sophie Gallina; Emmanuelle Durand; Vincent Vatin; Franck Degraeve; Christine Proença; Stefan Gaget; Antje Körner; Peter Kovacs; Wieland Kiess; Jean Tichet; Michel Marre; Anna-Liisa Hartikainen; Fritz Horber; Natascha Potoczna; Serge Hercberg; Claire Levy-Marchal; François Pattou; Barbara Heude; Maithe Tauber; Mark I. McCarthy; Alexandra I. F. Blakemore; Alexandre Montpetit; Constantin Polychronakos; Jacques Weill; Lachlan Coin

We analyzed genome-wide association data from 1,380 Europeans with early-onset and morbid adult obesity and 1,416 age-matched normal-weight controls. Thirty-eight markers showing strong association were further evaluated in 14,186 European subjects. In addition to FTO and MC4R, we detected significant association of obesity with three new risk loci in NPC1 (endosomal/lysosomal Niemann-Pick C1 gene, P = 2.9 × 10−7), near MAF (encoding the transcription factor c-MAF, P = 3.8 × 10−13) and near PTER (phosphotriesterase-related gene, P = 2.1 × 10−7).


Nature Genetics | 2009

A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk

Nabila Bouatia-Naji; Amélie Bonnefond; Christine Cavalcanti-Proença; Thomas Sparsø; Johan Holmkvist; Marion Marchand; Jérôme Delplanque; Stéphane Lobbens; Ghislain Rocheleau; Emmanuelle Durand; Franck De Graeve; Jean-Claude Chèvre; Knut Borch-Johnsen; Anna-Liisa Hartikainen; Aimo Ruokonen; Jean Tichet; Michel Marre; Jacques Weill; Barbara Heude; Maithe Tauber; Katleen Lemaire; Frans Schuit; Paul Elliott; Torben Jørgensen; Guillaume Charpentier; Samy Hadjadj; Stéphane Cauchi; Martine Vaxillaire; Robert Sladek; Sophie Visvikis-Siest

In genome-wide association (GWA) data from 2,151 nondiabetic French subjects, we identified rs1387153, near MTNR1B (which encodes the melatonin receptor 2 (MT2)), as a modulator of fasting plasma glucose (FPG; P = 1.3 × 10−7). In European populations, the rs1387153 T allele is associated with increased FPG (β = 0.06 mmol/l, P = 7.6 × 10−29, N = 16,094), type 2 diabetes (T2D) risk (odds ratio (OR) = 1.15, 95% CI = 1.08–1.22, P = 6.3 × 10−5, cases N = 6,332) and risk of developing hyperglycemia or diabetes over a 9-year period (hazard ratio (HR) = 1.20, 95% CI = 1.06–1.36, P = 0.005, incident cases N = 515). RT-PCR analyses confirm the presence of MT2 transcripts in neural tissues and show MT2 expression in human pancreatic islets and beta cells. Our data suggest a possible link between circadian rhythm regulation and glucose homeostasis through the melatonin signaling pathway.


Nature | 2010

A new highly penetrant form of obesity due to deletions on chromosome 16p11.2

Robin G. Walters; Sébastien Jacquemont; Armand Valsesia; A.J. de Smith; Danielle Martinet; Johanna C. Andersson; Mario Falchi; Fangfang Chen; Joris Andrieux; Stéphane Lobbens; Bruno Delobel; Fanny Stutzmann; J. S. El-Sayed Moustafa; Jean-Claude Chèvre; Cécile Lecoeur; Vincent Vatin; Sonia Bouquillon; Jessica L. Buxton; Odile Boute; M. Holder-Espinasse; Jean-Marie Cuisset; M.-P. Lemaitre; A.-E. Ambresin; A. Brioschi; M. Gaillard; V. Giusti; Florence Fellmann; Alessandra Ferrarini; Nouchine Hadjikhani; Dominique Campion

Obesity has become a major worldwide challenge to public health, owing to an interaction between the Western ‘obesogenic’ environment and a strong genetic contribution. Recent extensive genome-wide association studies (GWASs) have identified numerous single nucleotide polymorphisms associated with obesity, but these loci together account for only a small fraction of the known heritable component. Thus, the ‘common disease, common variant’ hypothesis is increasingly coming under challenge. Here we report a highly penetrant form of obesity, initially observed in 31 subjects who were heterozygous for deletions of at least 593 kilobases at 16p11.2 and whose ascertainment included cognitive deficits. Nineteen similar deletions were identified from GWAS data in 16,053 individuals from eight European cohorts. These deletions were absent from healthy non-obese controls and accounted for 0.7% of our morbid obesity cases (body mass index (BMI) ≥ 40 kg m-2 or BMI standard deviation score ≥ 4; P = 6.4 × 10-8, odds ratio 43.0), demonstrating the potential importance in common disease of rare variants with strong effects. This highlights a promising strategy for identifying missing heritability in obesity and other complex traits: cohorts with extreme phenotypes are likely to be enriched for rare variants, thereby improving power for their discovery. Subsequent analysis of the loci so identified may well reveal additional rare variants that further contribute to the missing heritability, as recently reported for SIM1 (ref. 3). The most productive approach may therefore be to combine the ‘power of the extreme’ in small, well-phenotyped cohorts, with targeted follow-up in case-control and population cohorts.


Nature | 2009

Copy number variation at 1q21.1 associated with neuroblastoma

Sharon J. Diskin; Cuiping Hou; Joseph T. Glessner; Edward F. Attiyeh; Marci Laudenslager; Kristopher R. Bosse; Kristina A. Cole; Yael P. Mosse; Andrew C. Wood; Jill Lynch; Katlyn Pecor; Maura Diamond; Cynthia Winter; Kai Wang; Cecilia Kim; Elizabeth A. Geiger; Patrick McGrady; Alexandra I. F. Blakemore; Wendy B. London; Tamim H. Shaikh; Jonathan P. Bradfield; Struan F. A. Grant; Hongzhe Li; Marcella Devoto; Eric R. Rappaport; Hakon Hakonarson; John M. Maris

Common copy number variations (CNVs) represent a significant source of genetic diversity, yet their influence on phenotypic variability, including disease susceptibility, remains poorly understood. To address this problem in human cancer, we performed a genome-wide association study of CNVs in the childhood cancer neuroblastoma, a disease in which single nucleotide polymorphism variations are known to influence susceptibility. We first genotyped 846 Caucasian neuroblastoma patients and 803 healthy Caucasian controls at ∼550,000 single nucleotide polymorphisms, and performed a CNV-based test for association. We then replicated significant observations in two independent sample sets comprised of a total of 595 cases and 3,357 controls. Here we describe the identification of a common CNV at chromosome 1q21.1 associated with neuroblastoma in the discovery set, which was confirmed in both replication sets. This CNV was validated by quantitative polymerase chain reaction, fluorescent in situ hybridization and analysis of matched tumour specimens, and was shown to be heritable in an independent set of 713 cancer-free parent–offspring trios. We identified a previously unknown transcript within the CNV that showed high sequence similarity to several neuroblastoma breakpoint family (NBPF) genes and represents a new member of this gene family (NBPF23). This transcript was preferentially expressed in fetal brain and fetal sympathetic nervous tissues, and the expression level was strictly correlated with CNV state in neuroblastoma cells. These data demonstrate that inherited copy number variation at 1q21.1 is associated with neuroblastoma and implicate a previously unknown neuroblastoma breakpoint family gene in early tumorigenesis of this childhood cancer.


Human Molecular Genetics | 2009

A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism

Adam J. de Smith; Carolin Purmann; Robin G. Walters; Richard J. Ellis; Susan E. Holder; Mieke M. van Haelst; Angela F. Brady; Una L. Fairbrother; Mehul T. Dattani; Julia M. Keogh; Elana Henning; Giles S. H. Yeo; Stephen O'Rahilly; Philippe Froguel; I. Sadaf Farooqi; Alexandra I. F. Blakemore

Genetic studies in patients with severe early-onset obesity have provided insights into the molecular and physiological pathways that regulate body weight in humans. We report a 19-year-old male with hyperphagia and severe obesity, mild learning difficulties and hypogonadism, in whom diagnostic tests for Prader-Willi syndrome (PWS) had been negative. We carried out detailed clinical and metabolic phenotyping of this patient and investigated the genetic basis of this obesity syndrome using Agilent 185 k array comparative genomic hybridization (aCGH) and Affymetrix 6.0 genotyping arrays. The identified deletion was validated using multiplex ligation-dependent probe amplification and long-range PCR, followed by breakpoint sequencing which enabled precise localization of the deletion. We identified a approximately 187 kb microdeletion at chromosome 15q11-13 that encompasses non-coding small nucleolar RNAs (including HBII-85 snoRNAs) which were not expressed in peripheral lymphocytes from the patient. Characterization of the clinical phenotype revealed increased ad libitum food intake, normal basal metabolic rate when adjusted for fat-free mass, partial hypogonadotropic hypogonadism and growth failure. We have identified a novel deletion on chromosome 15q11-13 in an individual with hyperphagia, obesity, hypogonadism and other features associated with PWS, which is normally caused by deficiency of several paternally expressed imprinted transcripts within chromosome 15q11-13, a region that includes multiple protein-coding genes as well as several non-coding snoRNAs. These findings provide direct evidence for the role of a particular family of non-coding RNAs, the HBII-85 snoRNA cluster, in human energy homeostasis, growth and reproduction.


Human Genetics | 2001

A single nucleotide polymorphism (SNP) in the leptin receptor is associated with BMI, fat mass and leptin levels in postmenopausal Caucasian women

Naomi Quinton; Allison J. Lee; Richard Ross; Richard Eastell; Alexandra I. F. Blakemore

Abstract. The human leptin (obese) receptor gene contains a number of single nucleotide polymorphisms, including GLN223ARG, which changes an amino acid on the extracellular region common to all isoforms of the receptor. Here, we demonstrate that, in postmenopausal Caucasian women, genotypes at that locus are associated with differences in body mass index (BMI), fat mass and serum leptin levels. Measurement of serum leptin-binding activity indicates that this may reflect changed receptor function associated with genotype. These observations indicate that functional variations in the leptin receptor gene are important factors in the regulation of adiposity and BMI.


Human Genetics | 1996

Interleukin-1 receptor antagonist allele (IL1RN*2) associated with nephropathy in diabetes mellitus.

Alexandra I. F. Blakemore; Angela Cox; Ana-Maria Gonzalez; Joanna K. Maskill; Marianne E. Hughes; R. Malcolm Wilson; John D. Ward; Gordon W. Duff

We have previously found association between an allele of the interleukin-1 (IL-1) receptor antagonist gene (ILIRN) and several inflammatory diseases, where IL-1 has been implicated in the inflammatory mechanism. We have now, therefore, tested the association of this specific allele (ILIRN*2) with complications of diabetes which have an inflammatory tissue component. We have tested the allele frequency of ILIRN*2 in 128 patients with insulin-dependent and 125 with non-insulin-dependent diabetes mellitus (NIDDM). There was a significant association between carriage of ILIRN*2 and diabetic nephropathy (P < 0.0001,Pcorrected < 0.0012). The association was significant in both types of diabetes, but the observed increase was highest in NIDDM, rising to double the control levels. It appears that ILIRN*2 is a novel genetic marker of severity of inflammatory complications of diseases rather than a marker of disease susceptibility. If the DNA polymorphism is associated with altered gene function, new therapeutic interventions may be possible.


Human Genetics | 1994

Interleukin 1 receptor antagonist gene polymorphism association with lichen sclerosus

F. E. Clay; Michael J. Cork; Joanna K. Tarlow; Alexandra I. F. Blakemore; Christine I. Harrington; Fiona M. Lewis; Gordon W. Duff

Cytokines play key roles in immune responses, inflammation and fibrosis. The balance between levels of cytokines, their receptors and specific inhibitors controls inflammatory reactions in tissues. The pathogenesis of lichen sclerosus is unknown but probably involves cytokine mediators such as interleukin 1 (IL-1) and interleukin 1 receptor antagonist (IL-1ra). The IL-1ra is a competitive inhibitor of IL-1α and IL-1β, and therefore is a powerful endogenous anti-inflammatory molecule. The gene encoding IL-1ra (designated IL-1RN) has a variable number tandem repeat polymorphism in intron 2. There are five alleles of the gene corresponding to 2, 3, 4, 5 and 6 repeats of an 86-bp sequence. We have determined allele frequencies in a control population and a group of 78 patients with lichen sclerosus. The frequency of one of the alleles is related to increasing disease severity. Thus, IL-1RN may be a candidate gene or severity factor for lichen sclerosus or may possibly be a linked marker to another, as yet undefined, gene.


Nature Biotechnology | 2011

Structural variation in two human genomes mapped at single-nucleotide resolution by whole genome de novo assembly

Yingrui Li; Hancheng Zheng; Ruibang Luo; Honglong Wu; Hongmei Zhu; Ruiqiang Li; Hongzhi Cao; Boxin Wu; Shujia Huang; Haojing Shao; Hanzhou Ma; Fan Zhang; Shuijian Feng; Wei Zhang; Hongli Du; Geng Tian; Jingxiang Li; Xiuqing Zhang; Songgang Li; Lars Bolund; Karsten Kristiansen; Adam J. de Smith; Alexandra I. F. Blakemore; Lachlan Coin; Huanming Yang; Jian Wang; Jun Wang

Here we use whole-genome de novo assembly of second-generation sequencing reads to map structural variation (SV) in an Asian genome and an African genome. Our approach identifies small- and intermediate-size homozygous variants (1–50 kb) including insertions, deletions, inversions and their precise breakpoints, and in contrast to other methods, can resolve complex rearrangements. In total, we identified 277,243 SVs ranging in length from 1–23 kb. Validation using computational and experimental methods suggests that we achieve overall <6% false-positive rate and <10% false-negative rate in genomic regions that can be assembled, which outperforms other methods. Analysis of the SVs in the genomes of 106 individuals sequenced as part of the 1000 Genomes Project suggests that SVs account for a greater fraction of the diversity between individuals than do single-nucleotide polymorphisms (SNPs). These findings demonstrate that whole-genome de novo assembly is a feasible approach to deriving more comprehensive maps of genetic variation.

Collaboration


Dive into the Alexandra I. F. Blakemore's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robin G. Walters

Clinical Trial Service Unit

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lachlan Coin

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Diana Curtis

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S.M. Laird

Sheffield Hallam University

View shared research outputs
Top Co-Authors

Avatar

Joanna K. Tarlow

Royal Hallamshire Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge