Alexandra J. Corbett
University of Melbourne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexandra J. Corbett.
Nature | 2012
Lars Kjer-Nielsen; Onisha Patel; Alexandra J. Corbett; Jérôme Le Nours; Bronwyn Meehan; Ligong Liu; Mugdha Bhati; Zhenjun Chen; Lyudmila Kostenko; Rangsima Reantragoon; Nicholas A. Williamson; Anthony W. Purcell; Nadine L. Dudek; Malcolm J. McConville; Richard A. J. O’Hair; George N. Khairallah; Dale I. Godfrey; David P. Fairlie; Jamie Rossjohn; James McCluskey
Antigen-presenting molecules, encoded by the major histocompatibility complex (MHC) and CD1 family, bind peptide- and lipid-based antigens, respectively, for recognition by T cells. Mucosal-associated invariant T (MAIT) cells are an abundant population of innate-like T cells in humans that are activated by an antigen(s) bound to the MHC class I-like molecule MR1. Although the identity of MR1-restricted antigen(s) is unknown, it is present in numerous bacteria and yeast. Here we show that the structure and chemistry within the antigen-binding cleft of MR1 is distinct from the MHC and CD1 families. MR1 is ideally suited to bind ligands originating from vitamin metabolites. The structure of MR1 in complex with 6-formyl pterin, a folic acid (vitamin B9) metabolite, shows the pterin ring sequestered within MR1. Furthermore, we characterize related MR1-restricted vitamin derivatives, originating from the bacterial riboflavin (vitamin B2) biosynthetic pathway, which specifically and potently activate MAIT cells. Accordingly, we show that metabolites of vitamin B represent a class of antigen that are presented by MR1 for MAIT-cell immunosurveillance. As many vitamin biosynthetic pathways are unique to bacteria and yeast, our data suggest that MAIT cells use these metabolites to detect microbial infection.
Nature | 2014
Alexandra J. Corbett; Sidonia B. G. Eckle; Richard W. Birkinshaw; Ligong Liu; Onisha Patel; Jennifer Mahony; Zhenjun Chen; Rangsima Reantragoon; Bronwyn Meehan; Hanwei Cao; Nicholas A. Williamson; Richard A. Strugnell; Douwe van Sinderen; Jeffrey Y. W. Mak; David P. Fairlie; Lars Kjer-Nielsen; Jamie Rossjohn; James McCluskey
T cells discriminate between foreign and host molecules by recognizing distinct microbial molecules, predominantly peptides and lipids. Riboflavin precursors found in many bacteria and yeast also selectively activate mucosal-associated invariant T (MAIT) cells, an abundant population of innate-like T cells in humans. However, the genesis of these small organic molecules and their mode of presentation to MAIT cells by the major histocompatibility complex (MHC)-related protein MR1 (ref. 8) are not well understood. Here we show that MAIT-cell activation requires key genes encoding enzymes that form 5-amino-6-d-ribitylaminouracil (5-A-RU), an early intermediate in bacterial riboflavin synthesis. Although 5-A-RU does not bind MR1 or activate MAIT cells directly, it does form potent MAIT-activating antigens via non-enzymatic reactions with small molecules, such as glyoxal and methylglyoxal, which are derived from other metabolic pathways. The MAIT antigens formed by the reactions between 5-A-RU and glyoxal/methylglyoxal were simple adducts, 5-(2-oxoethylideneamino)-6-d-ribitylaminouracil (5-OE-RU) and 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), respectively, which bound to MR1 as shown by crystal structures of MAIT TCR ternary complexes. Although 5-OP-RU and 5-OE-RU are unstable intermediates, they became trapped by MR1 as reversible covalent Schiff base complexes. Mass spectra supported the capture by MR1 of 5-OP-RU and 5-OE-RU from bacterial cultures that activate MAIT cells, but not from non-activating bacteria, indicating that these MAIT antigens are present in a range of microbes. Thus, MR1 is able to capture, stabilize and present chemically unstable pyrimidine intermediates, which otherwise convert to lumazines, as potent antigens to MAIT cells. These pyrimidine adducts are microbial signatures for MAIT-cell immunosurveillance.
Journal of Experimental Medicine | 2013
Rangsima Reantragoon; Alexandra J. Corbett; Isaac G. Sakala; Nicholas A. Gherardin; John B. Furness; Zhenjun Chen; Sidonia B. G. Eckle; Adam P. Uldrich; Richard W. Birkinshaw; Onisha Patel; Lyudmila Kostenko; Bronwyn Meehan; Katherine Kedzierska; Ligong Liu; David P. Fairlie; Ted H. Hansen; Dale I. Godfrey; Jamie Rossjohn; James McCluskey; Lars Kjer-Nielsen
Generation of antigen-loaded MR1 tetramers that specifically stain MAIT cells identifies heterogeneity in phenotypes and TCR repertoires in humans and mice.
Nature Communications | 2013
Onisha Patel; Lars Kjer-Nielsen; Jérôme Le Nours; Sidonia B. G. Eckle; Richard W. Birkinshaw; Travis Beddoe; Alexandra J. Corbett; Ligong Liu; John J. Miles; Bronwyn Meehan; Rangsima Reantragoon; Maria L Sandoval-Romero; Lucy C. Sullivan; Andrew G. Brooks; Zhenjun Chen; David P. Fairlie; James McCluskey; Jamie Rossjohn
The mucosal-associated invariant T-cell antigen receptor (MAIT TCR) recognizes MR1 presenting vitamin B metabolites. Here we describe the structures of a human MAIT TCR in complex with human MR1 presenting a non-stimulatory ligand derived from folic acid and an agonist ligand derived from a riboflavin metabolite. For both vitamin B antigens, the MAIT TCR docks in a conserved manner above MR1, thus acting as an innate-like pattern recognition receptor. The invariant MAIT TCR α-chain usage is attributable to MR1-mediated interactions that prise open the MR1 cleft to allow contact with the vitamin B metabolite. Although the non-stimulatory antigen does not contact the MAIT TCR, the stimulatory antigen does. This results in a higher affinity of the MAIT TCR for a stimulatory antigen in comparison with a non-stimulatory antigen. We formally demonstrate a structural basis for MAIT TCR recognition of vitamin B metabolites, while illuminating how TCRs recognize microbial metabolic signatures.
Journal of Experimental Medicine | 2014
Sidonia B. G. Eckle; Richard W. Birkinshaw; Lyudmila Kostenko; Alexandra J. Corbett; Hamish E.G. McWilliam; Rangsima Reantragoon; Zhenjun Chen; Nicholas A. Gherardin; Travis Beddoe; Ligong Liu; Onisha Patel; Bronwyn Meehan; David P. Fairlie; Jose A. Villadangos; Dale I. Godfrey; Lars Kjer-Nielsen; James McCluskey; Jamie Rossjohn
A novel MAIT cell antagonist, Ac-6-FP, stabilizes MR1 and can inhibit MAIT cell activation with the flexible TCR β-chain serving to fine-tune the affinity of the TCR for antigen-MR1 complexes.
Immunology and Cell Biology | 2007
Anthony A. Scalzo; Alexandra J. Corbett; William D. Rawlinson; Gillian M. Scott; Mariapia A. Degli-Esposti
Cytomegalovirus (CMV) remains a major human pathogen causing significant morbidity and mortality in immunosuppressed or immunoimmature individuals. Although significant advances have been made in dissecting out certain features of the host response to human CMV (HCMV) infection, the strict species specificity of CMVs means that most aspects of antiviral immunity are best assessed in animal models. The mouse model of murine CMV (MCMV) infection is an important tool for analysis of in vivo features of host–virus interactions and responses to antiviral drugs that are difficult to assess in humans. Important studies of the contribution of host resistance genes to infection outcome, interplays between innate and adaptive host immune responses, the contribution of virus immune evasion genes and genetic variation in these genes to the establishment of persistence and in vivo studies of resistance to antiviral drugs have benefited from the well‐developed MCMV model. In this review, we discuss recent advances in the immunobiology of host–CMV interactions that provide intriguing insights into the complex interplay between host and virus that ultimately facilitates viral persistence. We also discuss recent studies of genetic responses to antiviral therapy, particularly changes in DNA polymerase and protein kinase genes of MCMV and HCMV.
Journal of Immunology | 2000
Yifan Zhan; Alexandra J. Corbett; Jamie L. Brady; Robyn M. Sutherland; Andrew M. Lew
Mice made transgenic (Tg) for a rat anti-mouse CD4 Ab (GK mice) represent a novel CD4-deficient model. They not only lack canonical CD4 cells in the periphery, but also lack the residual aberrant Th cells that are found in CD4−/− mice and MHC class II−/− mice. To analyze the role of CD4 help and costimulation for CTL induction against alloantigens, we have assessed the surface and functional phenotype of CD8 cells in vivo (e.g., clearance of allogeneic P815 cells) and in vitro. In our CD4-deficient GK mice, CTL responses to allogeneic P815 cells were induced, albeit delayed, and were sufficient to eliminate P815 cells. Induction of CTL and elimination of allogeneic P815 cells were inhibited both in the presence and absence of CD4 cells by temporary CD40 ligand blockade. This indicated that direct interaction of CD40/CD40L between APCs and CD8 cells may be an accessory signal in CTL induction (as well as the indirect pathway via APC/CD4 interaction). Furthermore, whereas in CTLA4Ig single Tg mice P815 cells were rejected promptly, in the double Tg GK/CTLA4Ig mice CTL were not induced and allogeneic P815 cells were not rejected. These findings suggest that CD40/CD40L is involved in both CD4-dependent and CD4-independent pathways, and that B7/CD28 is pivotal in the CD4-independent pathway of CTL induction against allogeneic P815 cells.
Nature Immunology | 2016
Hui-Fern Koay; Nicholas A. Gherardin; Anselm Enders; Liyen Loh; Laura K. Mackay; Catarina F Almeida; Brendan E. Russ; Claudia A. Nold-Petry; Marcel F. Nold; Sammy Bedoui; Zhenjun Chen; Alexandra J. Corbett; Sidonia B. G. Eckle; Bronwyn Meehan; Yves d'Udekem; Igor E. Konstantinov; Martha Lappas; Ligong Liu; Christopher C. Goodnow; David P. Fairlie; Jamie Rossjohn; Mark M. W. Chong; Katherine Kedzierska; Stuart P. Berzins; Gabrielle T. Belz; James McCluskey; Adam P. Uldrich; Dale I. Godfrey; Daniel G. Pellicci
Mucosal-associated invariant T cells (MAIT cells) detect microbial vitamin B2 derivatives presented by the antigen-presenting molecule MR1. Here we defined three developmental stages and checkpoints for the MAIT cell lineage in humans and mice. Stage 1 and stage 2 MAIT cells predominated in thymus, while stage 3 cells progressively increased in abundance extrathymically. Transition through each checkpoint was regulated by MR1, whereas the final checkpoint that generated mature functional MAIT cells was controlled by multiple factors, including the transcription factor PLZF and microbial colonization. Furthermore, stage 3 MAIT cell populations were expanded in mice deficient in the antigen-presenting molecule CD1d, suggestive of a niche shared by MAIT cells and natural killer T cells (NKT cells). Accordingly, this study maps the developmental pathway and checkpoints that control the generation of functional MAIT cells.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Liyen Loh; Zhongfang Wang; Sneha Sant; Marios Koutsakos; Sinthujan Jegaskanda; Alexandra J. Corbett; Ligong Liu; David P. Fairlie; Jane Crowe; Jamie Rossjohn; Jianqing Xu; Peter C. Doherty; James McCluskey; Katherine Kedzierska
Significance Mucosal-associated invariant T (MAIT) cells are innate-like T lymphocytes with potent antibacterial reactivity. In this study, we investigated whether MAIT cells also contribute to immunity against influenza A viruses. Compared with those who succumbed, hospitalized patients who recovered from severe avian H7N9 influenza infection had higher numbers of MAIT cells. Subsequent in vitro analysis established that MAIT cells from healthy donors are indirectly activated by influenza infection via an IL-18–dependent (but not IL-12–dependent) mechanism requiring the involvement of CD14+ monocytes. Our findings highlight the potential for MAIT cells to promote protective immunity in human influenza. Mucosal-associated invariant T (MAIT) cells are innate-like T lymphocytes known to elicit potent immunity to a broad range of bacteria, mainly via the rapid production of inflammatory cytokines. Whether MAIT cells contribute to antiviral immunity is less clear. Here we asked whether MAIT cells produce cytokines/chemokines during severe human influenza virus infection. Our analysis in patients hospitalized with avian H7N9 influenza pneumonia showed that individuals who recovered had higher numbers of CD161+Vα7.2+ MAIT cells in peripheral blood compared with those who succumbed, suggesting a possible protective role for this lymphocyte population. To understand the mechanism underlying MAIT cell activation during influenza, we cocultured influenza A virus (IAV)-infected human lung epithelial cells (A549) and human peripheral blood mononuclear cells in vitro, then assayed them by intracellular cytokine staining. Comparison of influenza-induced MAIT cell activation with the profile for natural killer cells (CD56+CD3−) showed robust up-regulation of IFNγ for both cell populations and granzyme B in MAIT cells, although the individual responses varied among healthy donors. However, in contrast to the requirement for cell-associated factors to promote NK cell activation, the induction of MAIT cell cytokine production was dependent on IL-18 (but not IL-12) production by IAV-exposed CD14+ monocytes. Overall, this evidence for IAV activation via an indirect, IL-18–dependent mechanism indicates that MAIT cells are protective in influenza, and also possibly in any human disease process in which inflammation and IL-18 production occur.
Journal of Immunology | 2011
Alexandra J. Corbett; Jérôme D. Coudert; Catherine A. Forbes; Anthony A. Scalzo
The Ly49H activating receptor on C57BL/6 (B6) NK cells plays a key role in early resistance to murine cytomegalovirus (MCMV) infection through specific recognition of the MCMV-encoded MHC class I-like molecule m157 expressed on infected cells. The m157 molecule is also recognized by the Ly49I inhibitory receptor from the 129/J mouse strain. The m157 gene is highly sequence variable among MCMV isolates, with many m157 variants unable to bind Ly49HB6. In this study, we have sought to define if m157 variability leads to a wider spectrum of interactions with other Ly49 molecules and if this modifies host susceptibility to MCMV. We have identified novel m157–Ly49 receptor interactions, involving Ly49C inhibitory receptors from B6, BALB/c, and NZB mice, as well as the Ly49HNZB activation receptor. Using an MCMV recombinant virus in which m157K181 was replaced with m157G1F, which interacts with both Ly49HB6 and Ly49CB6, we show that the m157G1F–Ly49C interactions cause no apparent attenuating effect on viral clearance in B6 mice. Hence, when m157 can bind both inhibitory and activation NK cell receptors, the outcome is still activation. Thus, these data indicate that whereas m157 variants predominately interact with inhibitory Ly49 receptors, these interactions do not profoundly interfere with early NK cell responses.