Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandra L. Joyner is active.

Publication


Featured researches published by Alexandra L. Joyner.


Nature | 2003

A gene expression atlas of the central nervous system based on bacterial artificial chromosomes

Shiaoching Gong; Chen Zheng; Martin L. Doughty; Kasia Losos; Nicholas Didkovsky; Uta B. Schambra; Norma J. Nowak; Alexandra L. Joyner; Gabrielle Leblanc; Mary E. Hatten; Nathaniel Heintz

The mammalian central nervous system (CNS) contains a remarkable array of neural cells, each with a complex pattern of connections that together generate perceptions and higher brain functions. Here we describe a large-scale screen to create an atlas of CNS gene expression at the cellular level, and to provide a library of verified bacterial artificial chromosome (BAC) vectors and transgenic mouse lines that offer experimental access to CNS regions, cell classes and pathways. We illustrate the use of this atlas to derive novel insights into gene function in neural cells, and into principal steps of CNS development. The atlas, library of BAC vectors and BAC transgenic mice generated in this screen provide a rich resource that allows a broad array of investigations not previously available to the neuroscience community.


Nature | 2005

In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog

Sohyun Ahn; Alexandra L. Joyner

Sonic hedgehog (Shh) has been implicated in the ongoing neurogenesis in postnatal rodent brains. Here we adopted an in vivo genetic fate-mapping strategy, using Gli1 (GLI-Kruppel family member) as a sensitive readout of Shh activity, to systematically mark and follow the fate of Shh-responding cells in the adult mouse forebrain. We show that initially, only a small population of cells (including both quiescent neural stem cells and transit-amplifying cells) responds to Shh in regions undergoing neurogenesis. This population subsequently expands markedly to continuously provide new neurons in the forebrain. Our study of the behaviour of quiescent neural stem cells provides in vivo evidence that they can self-renew for over a year and generate multiple cell types. Furthermore, we show that the neural stem cell niches in the subventricular zone and dentate gyrus are established sequentially and not until late embryonic stages.


Nature Genetics | 2004

The Knockout Mouse Project

Christopher P. Austin; James F. Battey; Allan Bradley; Maja Bucan; Mario R. Capecchi; Francis S. Collins; William F. Dove; Geoffrey M. Duyk; Susan M. Dymecki; Janan T. Eppig; Franziska Grieder; Nathaniel Heintz; Geoff Hicks; Thomas R. Insel; Alexandra L. Joyner; Beverly H. Koller; K. C. Kent Lloyd; Terry Magnuson; Mark Moore; Andras Nagy; Jonathan D. Pollock; Allen D. Roses; Arthur T. Sands; Brian Seed; William C. Skarnes; Jay Snoddy; Philippe Soriano; D. Stewart; Francis Stewart; Bruce Stillman

Mouse knockout technology provides a powerful means of elucidating gene function in vivo, and a publicly available genome-wide collection of mouse knockouts would be significantly enabling for biomedical discovery. To date, published knockouts exist for only about 10% of mouse genes. Furthermore, many of these are limited in utility because they have not been made or phenotyped in standardized ways, and many are not freely available to researchers. It is time to harness new technologies and efficiencies of production to mount a high-throughput international effort to produce and phenotype knockouts for all mouse genes, and place these resources into the public domain.Mouse knockout technology provides a powerful means of elucidating gene function in vivo, and a publicly available genome-wide collection of mouse knockouts would be significantly enabling for biomedical discovery. To date, published knockouts exist for only about 10% of mouse genes. Furthermore, many of these are limited in utility because they have not been made or phenotyped in standardized ways, and many are not freely available to researchers. It is time to harness new technologies and efficiencies of production to mount a high-throughput international effort to produce and phenotype knockouts for all mouse genes, and place these resources into the public domain.


Nature Genetics | 1997

Huntingtin is required for neurogenesis and is not impaired by the Huntington's disease CAG expansion

Jacqueline K. White; Wojtek Auerbach; Mabel P. Duyao; Jean Paul Vonsattel; James F. Gusella; Alexandra L. Joyner; Marcy E. MacDonald

Huntingtons disease (HD) is an autosomal-dominant neurodegenerative disorder caused by a CAG repeat expansion that lengthens a glutamine segment in the novel huntingtin protein. To elucidate the molecular basis of HD, we extended the polyglutamine tract of the mouse homologue, Hdh, by targetted introduction of an expanded human HD CAG repeat, creating mutant HdhneoQ50 and HdhQ50 alleles that express reduced and wild-type levels of altered huntingtin, respectively. Mice homozygous for reduced levels displayed characteristic aberrant brain development and perinatal lethality, indicating a critical function for Hdh in neurogenesis. However, mice with normal levels of mutant huntingtin did not display these abnormalities, indicating that the expanded CAG repeat does not eliminate or detectably impair huntingtins neurogenic function. Thus, the HD defect in man does not mimic complete or partial Hdh inactivation and appears to cause neurodegenerative disease by a gain-of-function mechanism.


Molecular and Cellular Biology | 2006

Sonic hedgehog Signaling Regulates Gli2 Transcriptional Activity by Suppressing Its Processing and Degradation

Yong Pan; Chunyang Brian Bai; Alexandra L. Joyner; Baolin Wang

ABSTRACT Gli2 and Gli3 are the primary transcription factors that mediate Sonic hedgehog (Shh) signals in the mouse. Gli3 mainly acts as a transcriptional repressor, because the majority of full-length Gli3 protein is proteolytically processed. Gli2 is mostly regarded as a transcriptional activator, even though it is also suggested to have a weak repressing activity. What the molecular basis for its possible dual function is and how its activity is regulated by Shh signaling are largely unknown. Here we demonstrate that unlike the results seen with Gli3 and Cubitus Interruptus, the fly homolog of Gli, only a minor fraction of Gli2 is proteolytically processed to form a transcriptional repressor in vivo and that in addition to being processed, Gli2 full-length protein is readily degraded. The degradation of Gli2 requires the phosphorylation of a cluster of numerous serine residues in its carboxyl terminus by protein kinase A and subsequently by casein kinase 1 and glycogen synthase kinase 3. The phosphorylated Gli2 interacts directly with βTrCP in the SCF ubiquitin-ligase complex through two binding sites, which results in Gli2 ubiquitination and subsequent degradation by the proteasome. Both processing and degradation of Gli2 are suppressed by Shh signaling in vivo. Our findings provide the first demonstration of a molecular mechanism by which the Gli2 transcriptional activity is regulated by Shh signaling.


Developmental Cell | 2004

All Mouse Ventral Spinal Cord Patterning by Hedgehog Is Gli Dependent and Involves an Activator Function of Gli3

C. Brian Bai; Daniel Stephen; Alexandra L. Joyner

An important question is how the gradient of Hedgehog is interpreted by cells at the level of the Gli transcription factors. The full range of Gli activity and its dependence on Hh have not been determined, although the Gli2 activator and Gli3 repressor have been implicated. Using the spinal cord as a model system, we demonstrate that Gli3 can transduce Hedgehog signaling as an activator. All expression of the Hh target gene Gli1 is dependent on both Gli2 and Gli3. Unlike Gli2, however, Gli3 requires endogenous Gli1 for induction of floor plate and V3 interneurons. Strikingly, embryos lacking all Gli function develop motor neurons and three ventral interneuron subtypes, similar to embryos lacking Hh signaling and Gli3. Therefore, in the spinal cord all Hh signaling is Gli dependent. Furthermore, a combination of Gli2 and Gli3 is required to regulate motor neuron development and spatial patterning of ventral spinal cord progenitors.


Cell | 2004

Dynamic Changes in the Response of Cells to Positive Hedgehog Signaling during Mouse Limb Patterning

Sohyun Ahn; Alexandra L. Joyner

In the vertebrate limb, the posteriorly located zone of polarizing activity (ZPA) regulates digit identity through the morphogen Sonic Hedgehog (Shh). By genetically marking Shh-responding cells in mice, we have addressed whether the cumulative influence of positive Shh signaling over time and space reflects a linear gradient of Shh responsiveness and whether Shh could play additional roles in limb patterning. Our results show that all posterior limb mesenchyme cells, as well as the ectoderm, respond to Shh from the ZPA and become the bone, muscle, and skin of the posterior limb. Further, the readout of Shh activator function integrated over time and space does not display a stable and linear gradient along the A-P axis, as in a classical morphogen view. Finally, by fate mapping Shh-responding cells in Gli2 and Gli3 mutant limbs, we demonstrate that a specific level of positive Hh signaling is not required to specify digit identities.


Nature Reviews Neuroscience | 2006

Morphogen to mitogen: the multiple roles of hedgehog signalling in vertebrate neural development.

Marc V. Fuccillo; Alexandra L. Joyner; Gord Fishell

Key PointsHedgehog signalling in the mammalian nervous system has been traditionally associated with dorsoventral patterning. Many recent findings have demonstrated its involvement in various temporally regulated developmental processes. This review provides an overview of the spatial and temporal contexts in which hedgehog signalling is utilized.We outline the basic hedgehog signalling pathway and discuss the roles of newly identified regulators of this pathway, including extracellular mediators (such as IHOG) and a family of genes associated with cilia function.The review describes the core molecular components utilized in the establishment of ventral patterning in the spinal cord. We then discuss the role of hedgehog signalling in ventral patterning in the broader context of its role at various more anterior levels of the neuraxis, including the forebrain, midbrain and hindbrain.A number of non-patterning functions of hedgehog signalling have been discovered, including a role in the specification of oligodendrocyte precursors, as well as the regulation of embryonic proliferation and apoptosis.An unforeseen role for hedgehog signalling in ventral midline axonal guidance has been uncovered. Intriguingly, the time course of events suggests this is mediated by non-canonical signalling.Recently, hedgehog signalling has been shown to be active in adult neural stem cells and to be required for the maintenance of the telencephalic progenitor cell niche.The role of sonic hedgehog as a morphogen involved in establishing ventral cell identity in the CNS is well known. Fishell and colleagues outline the current understanding of the molecular pathways involved in patterning and describe several recently identified and unrelated roles for hedgehog signalling.AbstractSonic hedgehog has received an enormous amount of attention since its role as a morphogen that directs ventral patterning in the spinal cord was discovered a decade ago. Since that time, a bewildering array of information has been generated concerning both the components of the hedgehog signalling pathway and the remarkable number of contexts in which it functions. Nowhere is this more evident than in the nervous system, where hedgehog signalling has been implicated in events as disparate as axonal guidance and stem cell maintenance. Here we review our present knowledge of the hedgehog signalling pathway and speculate about areas in which further insights into this versatile pathway might be forthcoming.Sonic hedgehog has received an enormous amount of attention since its role as a morphogen that directs ventral patterning in the spinal cord was discovered a decade ago. Since that time, a bewildering array of information has been generated concerning both the components of the hedgehog signalling pathway and the remarkable number of contexts in which it functions. Nowhere is this more evident than in the nervous system, where hedgehog signalling has been implicated in events as disparate as axonal guidance and stem cell maintenance. Here we review our present knowledge of the hedgehog signalling pathway and speculate about areas in which further insights into this versatile pathway might be forthcoming.


Nature | 1999

A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer

Sandrine Millet; Kenneth S. Campbell; Douglas J. Epstein; Kasia Losos; Esther Harris; Alexandra L. Joyner

The mid/hindbrain (MHB) junction can act as an organizer to direct the development of the midbrain and anterior hindbrain. In mice, Otx2 is expressed in the forebrain and midbrain and Gbx2 is expressed in the anterior hindbrain, with a shared border at the level of the MHB organizer. Here we show that, in Gbx2-/- mutants, the earliest phenotype is a posterior expansion of the Otx2 domain during early somite stages. Furthermore, organizer genes are expressed at the shifted Otx2 border, but not in a normal spatial relationship. To test whether Gbx2 is sufficient to position the MHB organizer, we transiently expressed Gbx2 in the caudal Otx2 domain and found that the Otx2 caudal border was indeed shifted rostrally and a normal appearing organizer formed at this new Otx2 border. Transgenic embryos then showed an expanded hindbrain and a reduced midbrain at embryonic day 9.5–10. We propose that formation of a normal MHB organizer depends on a sharp Otx2 caudal border and that Gbx2 is required to position and sharpen this border.


Current Opinion in Cell Biology | 2000

Otx2, Gbx2 and Fgf8 interact to position and maintain a mid-hindbrain organizer.

Alexandra L. Joyner; Aimin Liu; Sandrine Millet

A decade ago, chick-quail transplantation studies demonstrated that the junction between the midbrain and hindbrain has the properties of an organizing center capable of patterning the midbrain and cerebellum. Many of the genes that function to pattern these tissues have been identified and extensively studied. Recent experiments have shown that Otx2, Gbx2 and Fgf8 genes play a major role in the positioning and functioning of this organizing center.

Collaboration


Dive into the Alexandra L. Joyner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Stephen

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Zhimin Lao

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandre Wojcinski

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roy V. Sillitoe

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge