Alexandra Lutz
Desert Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexandra Lutz.
Water Resources Research | 2015
Michael B. Fisher; Katherine F. Shields; Terence U. Chan; Elizabeth Christenson; Ryan Cronk; Hannah Leker; Destina Samani; Patrick Apoya; Alexandra Lutz; Jamie Bartram
Abstract Safe drinking water is critical to human health and development. In rural sub‐Saharan Africa, most improved water sources are boreholes with handpumps; studies suggest that up to one third of these handpumps are nonfunctional at any given time. This work presents findings from a secondary analysis of cross‐sectional data from 1509 water sources in 570 communities in the rural Greater Afram Plains (GAP) region of Ghana; one of the largest studies of its kind. 79.4% of enumerated water sources were functional when visited; in multivariable regressions, functionality depended on source age, management, tariff collection, the number of other sources in the community, and the district. A Bayesian network (BN) model developed using the same data set found strong dependencies of functionality on implementer, pump type, management, and the availability of tools, with synergistic effects from management determinants on functionality, increasing the likelihood of a source being functional from a baseline of 72% to more than 97% with optimal management and available tools. We suggest that functionality may be a dynamic equilibrium between regular breakdowns and repairs, with management a key determinant of repair rate. Management variables may interact synergistically in ways better captured by BN analysis than by logistic regressions. These qualitative findings may prove generalizable beyond the study area, and may offer new approaches to understanding and increasing handpump functionality and safe water access.
Science of The Total Environment | 2015
Laura Craig; Alexandra Lutz; Kate A. Berry; Wei Yang
Both dental and skeletal fluorosis caused by high fluoride intake are serious public health concerns around the world. Fluorosis is particularly pronounced in developing countries where elevated concentrations of naturally occurring fluoride are present in the drinking water, which is the primary route of exposure. The World Health Organization recommended limit of fluoride in drinking water is 1.5 mg F(-) L(-1), which is also the upper limit for fluoride in drinking water for several other countries such as Canada, China, India, Australia, and the European Union. In the United States the enforceable limit is much higher at 4 mg F(-) L(-1), which is intended to prevent severe skeletal fluorosis but does not protect against dental fluorosis. Many countries, including the United States, also have notably lower unenforced recommended limits to protect against dental fluorosis. One consideration in determining the optimum fluoride concentration in drinking water is daily water intake, which can be high in hot climates such as in northern Ghana. The results of this study show that average water intake is about two times higher in Ghana than in more temperate climates and, as a result, the fluoride intake is higher. The results also indicate that to protect the Ghanaian population against dental fluorosis, the maximum concentration of fluoride in drinking water for children under 6-8 years should be 0.6 mg F(-) L(-1) (and lower in the first two years of life), and the limit for older children and adults should be 1.0 mg F(-) L(-1). However, when considering that water treatment is not cost-free, the most widely recommended limit of 1.5 mg F(-) L(-1) - which is currently the limit in Ghana--may be appropriate for older children and adults since they are not vulnerable to dental fluorosis once the tooth enamel is formed.
Archive | 2011
Alexandra Lutz
Current scientific consensus predicts that continuing and significant climate changes arising from increasing greenhouse gas emissions will occur in coming decades, likely resulting in widespread alterations to hydrologic conditions. Hydrologic alterations are challenging for sustainable development of water resources, because of the direct reliance on the hydrologic cycle for adequate supplies of water and the cycle’s inherent vulnerability to change of temperature, precipitation, and streamflow. According to the IPCC, African countries are more vulnerable to changes of climate and resultant effects due to lack of capacity and economic development. 200 million people already water-stressed in Africa. Providing access to adequate supplies of water has been a high priority on the agenda of organizations working in the international development community. Progress has been made, but some of the greatest challenges that developing nations continue to face include providing access to water, while successfully managing it as an environmental resource, and mitigating the potential effects of climate change as this resource continues to be developed. Development and management of water resources has long proceeded under the assumption of a relatively constant climate, subject to some natural fluctuation. Critical water infrastructure in developed countries, such as the Colorado River System, are designed to buffer variability in precipitation and streamflow over time scales of a few years to a decade. Water infrastructure in the developing countries of sub-Saharan Africa is struggling to provide adequate water to inhabitants. Variability in precipitation and streamflow, in the form of a drought, has had devastating consequences. Access to water affects complex feedback loops between natural resources, land use, hydrologic and climate cycles, policy, population growth, agriculture, socio-economics of development, and stakeholders. The combination of rapid population growth, extreme climate, and uncertainties of inadequate data will have a disproportionate effect on Africa. Already, environmental and human crises have results from inadequate, or mismanaged, access to water in both developed and developing countries. As Sub-Saharan Africa continues to grow, climate change poses uncertainties for resources. This chapter reviews aspects of population growth, agriculture, and development within the feedback loops; what is known and projected with respect to climate change; hydrologic alterations of surface water and groundwater; caveats; and planning and the path forward.
Journal of African Earth Sciences | 2007
Alexandra Lutz; James M. Thomas; Greg Pohll; W. Alan McKay
Environmental Earth Sciences | 2011
Alexandra Lutz; James M. Thomas; Anna K. Panorska
Environmental Earth Sciences | 2009
Alexandra Lutz; James M. Thomas; Greg Pohll; Mamadou Keita; W. Alan McKay
Climate | 2014
Alexandra Lutz; Solomon Minyila; Bansaga Saga; Samuel Diarra; Braimah Apambire; James M. Thomas
Ecohydrology | 2016
Guoping Tang; Rosemary W.H. Carroll; Alexandra Lutz; Lin Sun
Procedia Earth and Planetary Science | 2013
Alexandra Lutz; James M. Thomas; Samuel Diarra
Journal of Hydrology | 2012
Sean A. Thomas; Kenneth C. McGwire; Alexandra Lutz; Christopher Kratt; E. Jamie Trammell; James M. Thomas; W. Alan McKay